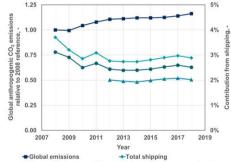
May 24, 2022

The Progress of Advanced Marine Fuels and the Specific Role of Dual-Fuel Technology in Decarbonising Shipping

German Weisser Winterthur Gas & Diesel Ltd

Setting the stage


AMF Task 60 (formerly Annex 60)

Purpose:

Assessment of fuel options that have emerged or significantly developed since the 2013 report (AMF Annex 41).

	IFO	LSFO	MGO/GTL/ BTL	HVO/SVO/ FAME	MeOH	DME/LPG	LNG/LBG
Engine and fuel system cost	Drop (n	Orop in	Drop in	Drop in	Dual fuel	Gas tank	Dual fuel Cryo tanks
Projected fuel cost		Refining	Refining	Landuse		Infra structure	Infra- structure
Emission abatement cost	SDx. NOx, PM, CO ₂	NOx, PM, CO;					
Safety related cost					Flash point	Ventilation	Press/temp
Indirect cost				Ethics	Cargo space	Cargo space	Cargo space
Serious impe	ost						
	ost ition available						

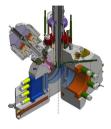
Table 13. Summary of Evaluation of Propellant Systems

◆Intern. shipping, vessel-based ★Intern. shipping, voyage-based

Setting the stage

AMF Task 60 (formerly Annex 60): The Progress of Advanced Marine Fuels

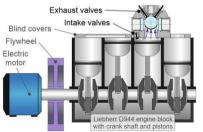
Purpose:Assessment of fuel options that have emerged or significantly developed
since the 2013 report (AMF Annex 41).Coordination:Kim Winther, Danish Technological Institute, DenmarkTimeframe:November 2019 to November 2022Participants:Canada, Denmark, Finland, Korea, Sweden, Switzerland, USA, China, Austria
Methanol Institute


Swiss contribution:

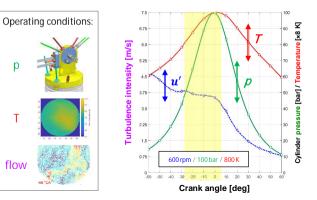
Assessment of the state of the art of dual fuel technology for large two-stroke engines (WinGD)

Investigation of ignition and combustion properties of mixtures of methane and gases with lower carbon intensity at conditions relevant for large two-stroke dual-fuel engines (FHNW, WinGD)

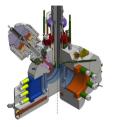
Principle, specifications and features



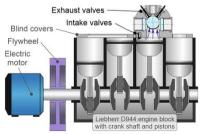
Optical combustion chamber


p

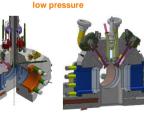
Т


flow

- Optical access: 4 windows optical chamber
 ^S 60×20 mm
- Engine-like compression/combustion pressure / temperature \rightarrow up to 160 bar max. 240 bar / 700 ... >1000 K
- Variation of flow/turbulence by speed: u'≈ 3...6 m/s (300...1000 rpm)



Principle, specifications and features



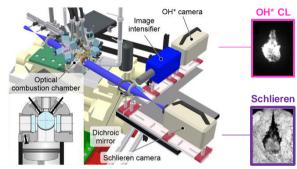
Optical combustion chamber

- Optical access: 4 windows optical chamber ⊗ 60×20 mm
- Engine-like compression/combustion pressure / temperature → up to 160 bar max. 240 bar / 700 ... >1000 K
- Variation of flow/turbulence by speed: u'≈ 3...6 m/s (300...1000 rpm)
- Flexible operation: mixture charge, injection parameter, timing, ...
- Variability to adapt test rig to a variety of DF combustion processes

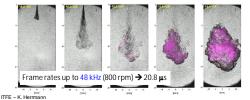
prechamber jet

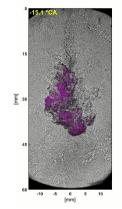
pilot spray

high pressure



gas injector

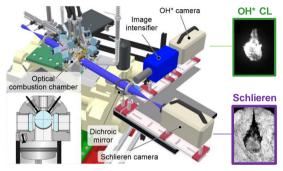

Characterization DF Combustion Processes


 $\mathbf{n}w$

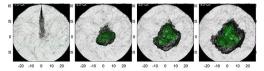
Lean-premixed pilot fuel ignited dual-fuel combustion

Simultaneous Schlieren / OH* chemiluminescence

D. Humair, et al.: "Characterization of dualfuel combustion processes", 6th Rostock Large Engine Symposium 2020


Investigations

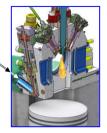
- \rightarrow Ignition delay (location):
- → Flame propagation:


- OH* chemiluminescence Schlieren
- → Heat release/cyclic stability: pressure measurements

$\mathsf{n}|w$

Experimental setup / operation parameter variation

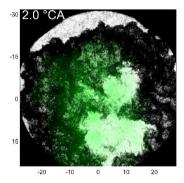
Simultaneous Schlieren / OH* chemiluminescence

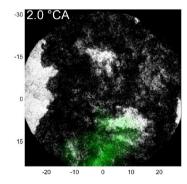


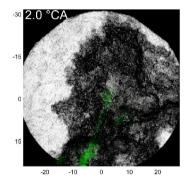
- Gaseous NH₃/air charge —
- Pilot fuel ignition (dodecane)
- Operation parameter variation:
 - ➤ air/fuel ratio
 - ➤ pressure
 - ➤ temperature
 - ➤ flow conditions
 - start/duration of injection

NH₃ combustion characteristics

- → Ignition delay (location):
- → Flame propagation:


- OH* chemiluminescence Schlieren
- → Heat release/cyclic stability: pressure measurements



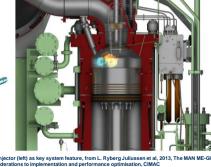

Variation of air/fuel ratio λ (mixture charge)

p_{comp} = 70 bar / T ≈ 810 K / SOI = -10 deg / ET = 500 μs

 $\lambda = 2.0$

Low-speed engine DF technology state of the art

Variants of dual-fuel engine concepts applied on two-stroke engines


The MAN ME-GI concept:

- Diesel-type combustion of a gas jet
- Injection pressure in the range of 150 to 315 bar, depending on engine load
- Ignition by means of pilot fuel via backup fuel system

Fuel varieties covered by the concept and derivatives:

- LNG, bio-methane, synthetic methane
- Ethane (ME-GIE)
- LPG (ME-LGIP)
- Methanol (ME-LGIM)
- VOC (LNG/VOC blends ME-GIE)

Illustration of ME-GI working principle (right) and gas injector (left) as key system feature, from L. Ryberg Juliussen et al. 2013. The MAN ME-GI engine: From initial system considerations to implementation and performance optimisation. CIMAC

Low-speed engine DF technology state of the art Variants of dual-fuel engine concepts applied on two-stroke engines

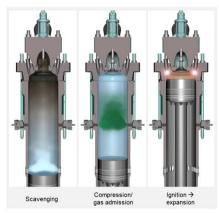


Illustration of WinGD X-DF working principle, from I. Nylund I., M. Ott, 2013, Development of a dual fuel technology for slow-speed engines, CIMAC The WinGD X-DF concept:

- Engine operating according to the Otto process
- Pre-mixed 'Lean burn' technology
- Low pressure gas admission at 'mid stroke'
- Ignition by pilot fuel in prechamber
- Combustion in main chamber initiated and enhanced by hot jets

Largely similar approach used on MAN ME-GA engines

Fuel varieties covered by the concept:

- LNG, bio-methane, synthetic methane
- VOC (LNG/VOC blends)

Low-speed engine DF technology state of the art Future fuel development plans of large two-stroke engine developers

Fuel types	MC	ME-B	ME-C	ME-GI	ME-GA	ME-GIE	ME-LGIM	ME-LGIF
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
HFO	Design	Design	Design	Design	Design	Design	Design	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
LNG		(*)	Retrofit	Design	Design	Retrofit	Retrofit	Retrofit
LEG (Ethane)		181	Retrofit	Retrofit	141	Design	Retrofit	Retrofit
Methanol / Ethanol		123	Retrofit	Retrofit	121	Retrofit	Design	Retrofit
LPG	1.2	121	Retrofit	Retrofit	640	Retrofit	Retrofit	Design
Ammonia		14	Retrofit	Retrofit	-	Retrofit	Retrofit	Retrofit

Fuel Type	Drop-in capable	X-engines	X-DF engines	
0 - 0.5%S VLSF0	n/a	Available	Available	
HFO	n/a	Available	Available	
Bio-diesel	*	Available	Available	
LNG	n/a	Retrofit	Available	
Bio-methane	✓	Retrofit	Available	
Synthetic methane	1	Retrofit	Available	
Ammonia	Dual- / Tri-Fuel	In Development	In Development	
Methanol/ Ethanol	Dual- / Tri-Fuel	In Development	In Development	
Lignin- derived biofuel	(✓)	Available	Available	

3D-view of hydrogen-fueled engine

Image of hydrogen-powered ship

Top row: Overview of fuel types and their applicability / retrofit ability on different engine design variants, MAN (left) from R. Bidstrup, 2021, MAN B&W Ammonia fueled engine development status, 42. Informationstagung zur Schiftsbetriebsforschung, WinGD (right), from D. Schneiter, S. Goranov, P. Krähenbilh, D. Schäpper, M. Spahni, G. Weisser, 2021, WinGD's X-act initiative: A holistic approach toward's sustainable shipping, Bith Sympositum, Sustainable Mobility, Transport and Power Generation'

Bottom row: JEng devlopment plans: Anmonia-fuelled ammonia gas carrier demonstration project (lott). Agreement for Trial of Hydrogen-fueled Engine equipped Onboard (right), Illustrations from press relaases retrieved from https://www.ieng.co.joken/mews (last accessed November 18. 2021)

Thank you!

GASLOG WALES

88 B

M

WNG

