Life Cycle Inventories of Bioenergy
Data v2.0 (2007)

Niels Jungbluth (Editor), Mireille Faist Emmenegger
ESU-services Ltd., Uster

Fredy Dinkel, Cornelia Stettler
Carbotech

Gabor Doka,
Doka Life Cycle Assessments

Mike Chudacoff
Chudacoff Ökoscience, Zürich

Arnaud Dauriat, Edgard Gnansounou
ENERS Energy Concept / LASEN, EPFL

Jürgen Sutter, Michael Spielmann
ETH Zürich

Natascha Kljun, Mario Keller
INFRAS

Konrad Schleiss
Umwelt- und Kompostberatung, Grenchen

ecoinvent report No. 17
Uster, Dezember 2007
Project "ecoinvent data v2.0"

Commissioners: Swiss Centre for Life Cycle Inventories, Dübendorf
Swiss Federal Office for the Environment (BAFU - FOEN), Bern
Swiss Federal Office for Energy (BFE), Bern
Swiss Federal Office for Agriculture (BLW), Bern

ecoinvent Board: Alexander Wokaun (Chair) PSI, Villigen
Gérard Gaillard, Agroscope Reckenholz-Tänikon Research Station, ART, Zürich
Lorenz Hilty, Empa, St. Gallen
Konrad Hungerbühler, ETHZ, Zürich
François Maréchal, EPFL, Lausanne

ecoinvent Advisory Council: Norbert Egli, BAFU, Bern
Mark Goedkoop, PRé Consultants B.V.
Patrick Hofstetter, WWF, Zürich
Roland Högger, öbu / Geberit AG, Rapperswil
Christoph Rentsch, BAFU (until January 2006)
Mark Zimmermann, BFE (until July 2007)

Institutes of the ecoinvent Centre:
Swiss Federal Institute of Technology Zürich (ETHZ)
Swiss Federal Institute of Technology Lausanne (EPFL)
Paul Scherrer Institute (PSI)
Swiss Federal Laboratories for Materials Testing and Research (Empa)
Agroscope Reckenholz-Tänikon Research Station (ART)

Participating consultants: Basler & Hofmann, Zürich
Bau- und Umweltchemie, Zürich
Carbotech AG, Basel
Chudacoff Oekoscience, Zürich
Doka Life Cycle Assessments, Zürich
Dr. Werner Environment & Development, Zürich
Ecointesys - Life Cycle Systems Sarl.
ENERS Energy Concept, Lausanne
ESU-services Ltd., Uster
Infras AG, Bern
Umwelt- und Kompostberatung, Grenchen

Software Support: ifu Hamburg GmbH

Project leader: Rolf Frischknecht, ecoinvent Centre, Empa, Dübendorf

Marketing and Sales: Annette Köhler, ecoinvent Centre, Empa, Dübendorf
Project “Ökobilanz von Energieprodukten”

Project leader: Niels Jungbluth, ESU-services Ltd.

Contact address: ESU-services Ltd.
Kanzeleistrasse 4
CH-8610 Uster
www.esu-services.ch
jungbluth@esu-services.ch

Commissioners: Swiss Federal Office for Energy (BFE), Berne
Swiss Federal Office for Agriculture (BLW), Berne
Swiss Federal Office for the Environment (BAFU-FOEN), Berne

Financial contribution: alcosuisse, Berne
Erdöl-Vereinigung, Zürich
Entsorgung und Recycling Zürich (ERZ)

Steering committee: Bruno Guggisberg, BFE, Bern
Daniel Binggeli, BFE, Bern
Lukas Gutzwiller, BFE, Bern
Anton Candinas, BLW, Bern
Amira Ellenberger, BAFU, Bern
Norbert Egli, BAFU, Bern
Daniel Zürcher, BAFU, Bern
Lukas Gutzwiller, BFE, Bern
Marion Bracher, EZV, Bern

Responsibility: This report has been prepared on behalf of one or several Federal Offices listed on the opposite page (see commissioners) and / or the ecoinvent Centre. The final responsibility for contents and conclusions remains with the authors of this report.

Terms of Use: Data published in this report are subject to the ecoinvent terms of use, in particular paragraphs 4 and 8. The ecoinvent terms of use (Version 2.0) can be downloaded via the Internet (www.ecoinvent.org).

Liability: Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.

Citation:

© Swiss Centre for Life Cycle Inventories / 2007
TP1: Life Cycle Inventories of Bioenergy

Authors: Mike Chudacoff, Chudacoff Ökoscience
 Arnaud Dauriat, ENERS
 Fredy Dinkel, Carbotech
 Mireille Faist Emmenegger, ESU-services Ltd.
 Edgard Gnansounou, LASEN / EPFL
 Niels Jungbluth, ESU-services Ltd.
 Natascha Kljun, INFRAS
 Michael Spielmann, ETHZ - UNS
 Cornelia Stettler, Carbotech
 Jürgen Sutter, ETHZ - ICB

Reviewer: Niels Jungbluth, ESU-services Ltd.
 Arnaud Dauriat, ENERS

TP1.b: Life Cycle Inventories of Imported Fuels

Authors: Arnaud Dauriat, ENERS
 Gabor Doka, Doka Life Cycle Assessments, Zürich
 Edgard Gnansounou, LASEN / EPFL
 Niels Jungbluth, ESU-services Ltd.
 Michael Spielmann, PSI
 Jürgen Sutter, ETHZ - ICB

Reviewer: Niels Jungbluth, ESU-services Ltd.
 Jürgen Sutter, ETHZ - ICB

TP1.c: LCI of modern biogas plants and organic rape seed

Authors: Fredy Dinkel, Carbotech
 Cornelia Stettler, Carbotech
 Konrad Schleiss, Umwelt- und Kompostberatung, Grenchen

Reviewer: Niels Jungbluth, ESU-services Ltd.

Citation:

© Swiss Centre for Life Cycle Inventories / 2007
Acknowledgements

The authors would like to express their warm thanks to all those who contributed to this study. The three Swiss Federal Office for Energy (BFE), for Agriculture (BLW) and for the Environment (BAFU - FOEN) financed this study. The steering group for this project gave many valuable inputs for the improvement of the work.

A further co financing from alcosuisse, Erdöl-Vereinigung, and Entsorgung und Recycling Zürich made it possible to investigate a number of further datasets. Furthermore the collaboration with industrial partners, non governmental organisations and public authorities in the review group helped to improve the quality of the investigated datasets. We thank all people involved in the review work.

The data have first been used and evaluated by the EMPA St. Gallen for their LCA study of different biofuel production chains (Dinkel 2007; Kägi et al. 2007; Zah et al. 2007). We thank the authors of these reports for further comments and hints on possible errors.
Summary

Today, transportation relies almost entirely on oil-based fuels and is responsible for about 30% of the world’s fossil fuel consumption. According to the principles of sustainability, a modern society should preserve non-renewable energy sources and replace them with renewable energy. The depletion of fossil energy reserves and the associated environmental impacts are the two main reasons that lead to consider the use of alternative fuels in the sector of transportation.

Fuels derived from biomass, also referred to as biofuels, are not only potentially renewable, but are also sufficiently similar to fossil fuels (which also have their origin in biomass) to provide direct substitution. It seems also to be a promising alternative to fossil fuels in the short term.

The goal of this project, which has been initiated by the Swiss Federal authorities BFE, BLW and BAFU, is to investigate life cycle inventory data of several energy products from biomass. These data shall complement existing datasets in the ecoinvent database and should become available in a future version of this database. Therefore the same methodology is used as in the ecoinvent project (Frischknecht et al. 2007a).

Some types of biomass and their energy products have already been investigated for the ecoinvent database, e.g. agricultural products (Nemecek et al. 2007), renewable materials (Althaus et al. 2007b) or wood products (Werner et al. 2007) as well as their use in combustion processes (Bauer 2007). Nevertheless many possible uses of biomass for energy purposes were so far not covered by the database.

Fig. 1.1 provides a systematic overview for the different types of bioenergy that are of interest. In general, four stages of production can be distinguished (provision of the biomass, conversion to a fuel, distribution and use).

![Diagram](https://example.com/diagram.png)

Fig. 1.1 Overview for the most important bioenergy products and their possible uses

In a pre-study the existing datasets of the ecoinvent database have been systematically organized (Jungbluth & Frischknecht 2004). The study helped to identify all missing process chains and unit processes in order to be able to define the bioenergy products of interest for the situation in Switzerland.

The following products are already covered with the ecoinvent data v1.2:

- Forestry
- Agricultural products from Switzerland
• Wood fuels
• Use of wood for heating and CHP

Within the first part of this project, the production and use of ethanol, biogas, BTL-fuels (biomass to liquid i.e. methanol) and plant oils have been investigated. Therefore agricultural products that are needed for these fuels (grass, straw, rape seeds) are included in the analysis. The use of biofuels in different means of transportation is investigated as well.

In the second part of the project a specific focus has been laid on biofuels imported to Switzerland. Therefore basic LCI data have been collected for biomass production and biofuel conversion in different countries. In this part of the project also to day and future conventional transport means have been included in the analysis.

In a third part of the project an inventory has been investigated for modern biogas plant with a cover on the storage which minimizes the methane emission. Also preliminary data for organic rape seed have been revised.

The calculation of cumulative results is based on ecoinvent data v1.2 (or partly ecoinvent data v1.3). It has been executed by the ecoinvent Manager with a copied version of the original database and with the same calculation routines.

It was not possible to cover all possible uses of bioenergy within this project due to financial limitations. The most important gaps that remain are the following:

• Full investigation of all possible production routes. Only the most important routes have been investigated.
• Use of some bioenergy carriers, e.g. plant oil, in heating and combined heat- and power plants.

In the impact assessment part of the project different options for the use of bioenergy are compared and analysed in a full life cycle assessment (Dinkel 2007; Kägi et al. 2007; Zah et al. 2007).
Zusammenfassung

Um einerseits im Forschungsprogramm Biomasse die richtigen Schwerpunkte setzen zu können und andererseits in der politischen Diskussion im Bereich Energie-, Umwelt- und Klimapolitik über die entsprechenden Entscheidungsgrundlagen zu verfügen, werden umfassende Ökoinventare von (Bio-)Energieprodukten erarbeitet, die alle relevanten Umweltbereiche gleichermaßen berücksichtigen und sowohl biogene als auch fossile Energieträger umfassen.

In der Datenbank ecoinvent gibt es bereits zahlreiche Datensätze zu diesem Thema, z.B. zu

- Holzprodukten und Holzbrennstoffen
- Landwirtschaftsprodukten aus der Schweiz
- Holzheizungen und Kraftwerke

Die Ökoinventare sind modular (Prozesse bzw. Prozessketten) aufgebaut, sodass eine Erweiterung und eine Bilanzierung von weiteren Anwendungsfällen einfach möglich ist. Folgende Wertschöpfungsebenen werden dabei unterschieden:

- Landwirtschaftliche und forstwirtschaftliche Produktion (bzw. Bereitstellung von Reststoffen und Nebenprodukten)
- Verarbeitung, Herstellung der Brenn- und Treibstoffe
- Evtl. Bestimmung eines Produktionsmixes
- Distribution bis zum Endverbraucher
- Verwendung der Energieträger für Fahrzeuge, Heizungen, etc.

Im ersten Teilprojekt (TP1, „LCI bioenergy“) wurden fehlende Sachbilanzdaten für alle wichtigen Produktionsstufen und Verfahren erhoben soweit sie nicht schon bisher Bestandteil der ecoinvent Daten v1.2 waren. Dabei wurden die Themen „Biogas“, „Ethanol“, „BTL/synthetische Treibstoffe“, „Öl“, „Transport“, und „Sonstige“ bearbeitet.

Im zweiten Teilprojekt (TP1.b, „LCI of imported fuels“) lag der Schwerpunkt dann auf der Bilanzierung von Treibstoffen, die u.U. in die Schweiz importiert werden können. Ausserdem wurden noch fehlende Inventare für die Schweiz nacherhoben und aktuelle Transportprozesse untersucht.

Im dritten Teilproject (TP1.c Biogas) wurde ein neuer Datensatz für moderne landwirtschaftliche Biogasanlagen mit Abdeckung der Nachgärung bilanziert. Diese minimiert die Methanemissionen. Ausserdem wurde der Datensatz für biologisch angebauten Raps mit neuen Daten überarbeitet.

Die Erhebung erfolgt entsprechend der Qualitätsrichtlinien für das ecoinvent Projekt (Frischknecht et al. 2007a).

Im zweiten Teil des Gesamtprojektes werden die erhobenen Daten in einer Gesamtökobilanz bewertet und verschiedene Treibstoffe und Herstellungswege miteinander verglichen (Kägi et al. 2007; Zah et al. 2007).
Table of Contents

Acknowledgements... i
Summary.. ii
Zusammenfassung iv
Table of Contents.. i

I. METHODOLOGICAL REMARKS .. 1

1 INTRODUCTION .. 2

1.1 Goal of the project.. 2
1.2 Natural conditions for biomass production in Switzerland ..3
1.3 Reserves and resources for bioenergy in Switzerland..4
1.3.1 Energy crops ... 5
1.3.2 Meadows .. 5
1.3.3 Agriculture residues ... 5
1.3.4 Forestry 6
1.3.5 Wood industry by-products... 6
1.3.6 Whey 6
1.3.7 Development perspectives... 7
1.3.8 Economical feasibility... 7
1.3.9 Restrictions (policies and markets) ... 8
1.3.10 Import of biomass and biofuels... 8
1.3.11 Summary 9
1.4 Characterisation of materials, energy carriers and products...9

2 GENERAL METHODOLOGY .. 10

2.1 Time frame of the investigation ... 10
2.2 Plant size and assessment for emerging technologies ..10
2.3 Infrastructure for conversion processes..10
2.4 Transports of biomass to the conversion plant ...10
2.5 Allocation for by-products ... 11
2.6 Fuel at regional storage .. 11
2.7 Energy resources12
2.8 Reference unit of products ... 12
2.9 Biogenic carbon balance .. 13
2.10 Inventories for felling of primary forests ...17
2.10.1 Introduction... 17
2.10.2 Methodology.. .1 7
2.11 New elementary flows.. 18
2.12 Air emissions..20
Abbreviations..20
References21

II. LIFE CYCLE INVENTORIES ... 24

1 INTRODUCTION TO PART II.. 25

II.I SWISS AGRICULTURAL PRODUCTS .. 27
Table of Contents

2 Grass

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>28</td>
</tr>
<tr>
<td>Abstract</td>
<td>28</td>
</tr>
<tr>
<td>2.1 Characteristic of analyzed grassland systems</td>
<td>28</td>
</tr>
<tr>
<td>2.1.1 Input from technosphere</td>
<td>29</td>
</tr>
<tr>
<td>2.1.2 Emissions to the air (N₂O, NOₓ, Ammonia)</td>
<td>30</td>
</tr>
<tr>
<td>2.1.3 Emissions to the water (Phosphate, Phosphorus, Nitrate)</td>
<td>30</td>
</tr>
<tr>
<td>2.1.4 Emissions to the soil (heavy metals, pesticides)</td>
<td>30</td>
</tr>
<tr>
<td>2.1.5 Carbon-binding and solar energy in biomass</td>
<td>31</td>
</tr>
<tr>
<td>2.1.6 Land occupation</td>
<td>31</td>
</tr>
<tr>
<td>2.1.7 Production of grass seed, organic, at storehouse</td>
<td>31</td>
</tr>
<tr>
<td>2.1.8 Production of silage grass for storage</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Characterisation of the product</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Reserves and Resources</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Use of the Product</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Life Cycle Inventories of Individual Grassland Systems</td>
<td>34</td>
</tr>
<tr>
<td>2.5.1 Grass from meadow intensive, organic, at field</td>
<td>34</td>
</tr>
<tr>
<td>2.5.2 Grass from meadow intensive IP, at field</td>
<td>35</td>
</tr>
<tr>
<td>2.5.3 Grass from natural meadow intensive organic, at field</td>
<td>37</td>
</tr>
<tr>
<td>2.5.4 Grass from natural meadow intensive IP, at field</td>
<td>39</td>
</tr>
<tr>
<td>2.5.5 Grass from natural meadow extensive IP/organic, at field</td>
<td>40</td>
</tr>
<tr>
<td>2.5.6 Straw, from straw areas, at field</td>
<td>41</td>
</tr>
<tr>
<td>2.5.7 Grass silage IP, at farm</td>
<td>42</td>
</tr>
<tr>
<td>2.5.8 Grass silage organic, at farm</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Data Quality Considerations</td>
<td>46</td>
</tr>
<tr>
<td>2.7 Cumulative Results and Interpretation</td>
<td>46</td>
</tr>
<tr>
<td>2.7.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>2.7.2 Grass production</td>
<td>46</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>47</td>
</tr>
<tr>
<td>Appendices: EcoSpold Meta Information</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td>53</td>
</tr>
</tbody>
</table>

3 Rape Seed, Organic, at Farm

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>54</td>
</tr>
<tr>
<td>Abstract</td>
<td>54</td>
</tr>
<tr>
<td>3.1 Characteristic of rape seed organic cultivation</td>
<td>54</td>
</tr>
<tr>
<td>3.1.1 Input from technosphere</td>
<td>54</td>
</tr>
<tr>
<td>3.1.2 Emissions to the air (N₂O, NOₓ, ammonia)</td>
<td>55</td>
</tr>
<tr>
<td>3.1.3 Emissions to the water (phosphate, phosphorus, nitrate)</td>
<td>55</td>
</tr>
<tr>
<td>3.1.4 Emissions to the soil (heavy metals)</td>
<td>55</td>
</tr>
<tr>
<td>3.1.5 Carbon-binding and solar energy in biomass</td>
<td>55</td>
</tr>
<tr>
<td>3.1.6 Land occupation of rape seed cultivation</td>
<td>55</td>
</tr>
<tr>
<td>3.1.7 Cold drying of rape seed</td>
<td>55</td>
</tr>
<tr>
<td>3.1.8 Seed, organic, at storehouse</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Characterisation of rape seed, organic</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Reserves and Resources of rape seed production</td>
<td>57</td>
</tr>
<tr>
<td>3.4 Use of rape seed</td>
<td>57</td>
</tr>
<tr>
<td>3.5 Life Cycle Inventories of rape seed, organic, at farm</td>
<td>57</td>
</tr>
<tr>
<td>3.6 Life Cycle Inventories of rape seed, organic, at storehouse</td>
<td>58</td>
</tr>
</tbody>
</table>
Table of Contents

Acknowledgement .. 84

6.1 Introduction .. 84

6.2 Farming Systems .. 84

6.3 Yields .. 84

6.4 System Characterisation .. 85

6.5 Raw materials and auxiliaries .. 85
 6.5.1 Fertilizers .. 85
 6.5.2 Water ... 86
 6.5.3 Pesticides and Biological Control ... 86
 6.5.4 Seedlings .. 87

6.6 Energy and machine usage ... 87

6.7 Transportation .. 87

6.8 Land use ... 88

6.9 CO₂-uptake and biomass energy .. 88

6.10 Carbon loss from soil after deforestation .. 89

6.11 Emissions to air .. 89

6.12 Emissions to water ... 89

6.13 Emissions to soil .. 90

1.2 Life cycle inventory of Oil Palm cultivation and data quality considerations 90

6.14 Cumulative Results and Interpretation .. 91
 6.14.1 Introduction ... 91
 6.14.2 Cultivation of oil palms ... 92

6.15 Conclusions ... 93

Abbreviations ... 93

Appendix: EcoSpold Meta Information .. 94

References ... 94

7 Rape, Conventional Production in Germany ... 96

Acknowledgement .. 96

7.1 Introduction .. 96

7.2 Yields .. 96

7.3 System Characterisation .. 97

7.4 Raw materials and auxiliaries .. 97
 1.2.1 Fertilizers .. 97
 1.2.2 Pesticides and Biological Control ... 98
 1.2.3 Seed .. 99

7.5 Energy and machine usage ... 100

7.6 Transportation .. 100

7.7 Drying .. 101

7.8 Land use ... 101

7.9 CO₂-uptake and biomass energy .. 101

7.10 Emissions to air .. 101

7.11 Emissions to water ... 102

7.12 Emissions to soil .. 102

1.3 Life cycle inventory of rape cultivation and data quality considerations 103

7.13 Cumulative Results and Interpretation .. 104
Table of Contents

1.3.1 Introduction ... 104
1.3.2 Cultivation of rape ... 105

7.14 Conclusions ... 105

Appendix: EcoSpold Meta Information ... 106

References ... 106

Rye, Production in Europe ... 108

Acknowledgement .. 108

8.1 Introduction .. 108
8.2 Yields .. 108
8.3 System Characterisation ... 109
8.4 Raw materials and auxiliaries ... 110
 1.3.3 Fertilizers .. 110
 1.3.4 Pesticides and Biological Control ... 111
 1.3.5 Seed .. 111
8.5 Energy and machine usage .. 112
8.6 Transportation .. 113
8.7 Drying .. 115
8.8 Land use .. 115
8.9 CO₂-uptake and biomass energy .. 115
8.10 Emissions to air ... 116
8.11 Emissions to water ... 116
8.12 Emissions to soil ... 116
8.13 Co-products and Allocation .. 118
8.14 Life cycle inventory of rye cultivation and data quality considerations 119

8.14.1 Introduction .. 121
8.14.2 Cultivation of rye .. 121
8.15 Conclusions .. 122

Appendix: EcoSpold Meta Information .. 123

References ... 123

Soybean ... 125

Acknowledgement .. 125

9.1 Introduction .. 125
9.2 System Characterisation ... 125
9.3 Yields ... 126
9.4 Raw materials and auxiliaries ... 126
 1.4.3 Fertilizers .. 126
 1.4.4 Pesticides and Biological Control ... 127
 1.4.5 Seed .. 128
9.5 Energy and machine usage .. 129
9.6 Transportation .. 130
9.7 Land use .. 130
9.8 CO₂-uptake and biomass energy .. 131
1.5 Carbon loss from soil after deforestation .. 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>Emissions to air</td>
<td>132</td>
</tr>
<tr>
<td>9.10</td>
<td>Emissions to water</td>
<td>133</td>
</tr>
<tr>
<td>9.11</td>
<td>Emissions to soil</td>
<td>133</td>
</tr>
<tr>
<td>9.12</td>
<td>Life cycle inventory of soybean cultivation and data quality considerations</td>
<td>134</td>
</tr>
<tr>
<td>9.13</td>
<td>Cumulative Results and Interpretation</td>
<td>136</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>10.2</td>
<td>Farming Systems</td>
<td>142</td>
</tr>
<tr>
<td>10.3</td>
<td>Yields</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>System Characterisation</td>
<td>143</td>
</tr>
<tr>
<td>10.5</td>
<td>Raw materials and auxiliaries</td>
<td>143</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Fertilizers</td>
<td>143</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Water</td>
<td>146</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Pesticides and Biological Control</td>
<td>146</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Seed</td>
<td>147</td>
</tr>
<tr>
<td>10.6</td>
<td>Energy and machine usage</td>
<td>148</td>
</tr>
<tr>
<td>10.7</td>
<td>Transportation</td>
<td>149</td>
</tr>
<tr>
<td>10.8</td>
<td>Land use</td>
<td>150</td>
</tr>
<tr>
<td>10.9</td>
<td>CO₂-uptake and biomass energy</td>
<td>151</td>
</tr>
<tr>
<td>10.10</td>
<td>Emissions to air</td>
<td>151</td>
</tr>
<tr>
<td>10.11</td>
<td>Emissions to water</td>
<td>152</td>
</tr>
<tr>
<td>10.12</td>
<td>Emissions to soil</td>
<td>152</td>
</tr>
<tr>
<td>10.13</td>
<td>Soil fertility</td>
<td>152</td>
</tr>
<tr>
<td>10.14</td>
<td>Cumulative Results and Interpretation</td>
<td>155</td>
</tr>
<tr>
<td>10.14.1</td>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>10.14.2</td>
<td>Cultivation of sugar cane</td>
<td>155</td>
</tr>
<tr>
<td>10.15</td>
<td>Conclusions</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>162</td>
</tr>
<tr>
<td>11.2</td>
<td>Yields</td>
<td>163</td>
</tr>
<tr>
<td>11.3</td>
<td>System Characterisation</td>
<td>163</td>
</tr>
<tr>
<td>11.4</td>
<td>Raw materials and auxiliaries</td>
<td>164</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Fertilizers</td>
<td>164</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Water</td>
<td>165</td>
</tr>
</tbody>
</table>

Table of Contents

- 11 SWEET SORGHUM, PRODUCTION IN CHINA
- 10 SUGAR CANE, PRODUCTION IN BRAZIL

Acknowledgement

- 9.13 Cumulative Results and Interpretation
- 10.14 Conclusions
- 9.12 Life cycle inventory of soybean cultivation and data quality considerations
- 10.5.2 Water
- 10.5.3 Pesticides and Biological Control
- 10.5.4 Seed
- 10.6 Energy and machine usage
- 10.7 Transportation
- 10.8 Land use
- 10.9 CO₂-uptake and biomass energy
- 10.10 Emissions to air
- 10.11 Emissions to water
- 10.12 Emissions to soil
- 10.13 Soil fertility
- 10.14 Cumulative Results and Interpretation
- 10.15 Conclusions
- References

SWEET SORGHUM, PRODUCTION IN CHINA

- 11.3 System Characterisation
- 11.4 Raw materials and auxiliaries
- 11.6.1 Fertilizers
- 11.6.2 Water

SUGAR CANE, PRODUCTION IN BRAZIL

- 10.1 Introduction
- 10.2 Farming Systems
- 10.3 Yields
- 10.4 System Characterisation
- 10.5 Raw materials and auxiliaries
- 10.6 Energy and machine usage
- 10.7 Transportation
- 10.8 Land use
- 10.9 CO₂-uptake and biomass energy
- 10.10 Emissions to air
- 10.11 Emissions to water
- 10.12 Emissions to soil
- 10.13 Soil fertility
- 10.14 Cumulative Results and Interpretation
- 10.15 Conclusions
- References

References

- 9.14 Conclusions
- 9.13 Cumulative Results and Interpretation
- 9.12 Life cycle inventory of soybean cultivation and data quality considerations
- 10.5.2 Water
- 10.5.3 Pesticides and Biological Control
- 10.5.4 Seed
- 10.6 Energy and machine usage
- 10.7 Transportation
- 10.8 Land use
- 10.9 CO₂-uptake and biomass energy
- 10.10 Emissions to air
- 10.11 Emissions to water
- 10.12 Emissions to soil
- 10.13 Soil fertility
- 10.14 Cumulative Results and Interpretation
- 10.15 Conclusions
- References
I. INTRODUCTION

- Pesticides and Biocidal Control ... 165
- Seed ... 166

11. ENERGY AND MACHINE USAGE

- Energy and machine usage .. 166
- Transportation .. 167
- Land use ... 167
- CO₂-uptake and biomass energy ... 168
- Emissions to air ... 168
- Emissions to water .. 168
- Emissions to soil ... 169
- Co-products and Allocation .. 169
- Life cycle inventory of sorghum cultivation and data quality considerations ... 170

12. BIOGAS

- Cumulative Results and Interpretation ... 172
- Introduction .. 177
- Cultivation of sweet sorghum ... 172
- Conclusions ... 173
- Appendix: EcoSpold Meta Information ... 174
- References ... 174

II.III. BIOMASS CONVERSION TO FUELS ... 176

12. BIOMASS

- Biogas .. 177
- Acknowledgement ... 177
- Corrections for v2.1 .. 177
- Summary .. 177
- Introduction .. 177
- External vs. Internal Use of Biogas ... 178
- System Boundaries and Allocation ... 178
- Reserves and Resources ... 178
- Characterisation of the Product ... 179
- Biogas from Biowaste .. 180
- Biogas from Sewage Sludge ... 181
- Biogas from Liquid Manure .. 181
- Biogas from Grass ... 181
- Biogas from Whey .. 182
- Summary of Properties of Biogas .. 182
- Use of the Product .. 182
- Biogas from Biowaste .. 182
- Sewage Gas .. 183
- Biogas from Agriculture Fermentation Plants 183
- Biogas from Grass ... 184
- Biogas from Whey .. 184
- Biogas from Biowaste .. 184
- System Characteristics .. 184
- Life Cycle Inventory of Biowaste Fermentation Plant 185
- Life Cycle Inventory of Anaerobic Digestion of Biowaste 186
- Biogas from Raw Sludge in Waste Water Treatment Plants 190
- System Characteristics .. 190
- Life Cycle Inventories of Sewage Sludge Fermentation Facilities 191
Table of Contents

12.6.3 Life Cycle Inventories for Raw Sludge Fermentation .. 192
12.7 Agricultural Fermentation of Manure .. 194
 12.7.1 System Characteristics .. 194
 12.7.2 Life Cycle Inventories of Agricultural Biogas Plants .. 195
 12.7.3 Life Cycle Inventories of Manure Fermentation, stock not covered 198
 12.7.4 Life Cycle Inventories of agricultural co-fermentation 201
12.8 Biogas from Grass .. 216
 12.8.1 System Characteristics .. 216
 12.8.2 Life Cycle Inventories for Grass Fermentation .. 219
12.9 Biogas from Whey ... 223
 12.9.1 System Characteristics .. 223
 12.9.2 Life Cycle Inventories for Whey Digestion ... 223
12.10 Summary of Key Factors .. 225
12.11 Cumulative Results and Interpretation .. 226
 12.11.1 Introduction .. 226
 12.11.2 Cumulative Results of Biogas Plant Infrastructure 226
 12.11.3 Cumulative Results for the Fermentation Processes 227
12.12 Conclusions .. 230
Abbreviations ... 230
References .. 241

13 USE AND UPGRADING OF BIOGAS ... 244
13.1 Introduction .. 244
13.2 Characterisation of Energy Carrier ... 244
13.3 Life Cycle Inventories of Biogas Production Mix .. 244
13.4 Life Cycle Inventories of Biogas Purification ... 245
 13.4.1 System Characterisation .. 245
 13.4.2 Infrastructure .. 247
 13.4.3 Properties of the Upgraded Biogas (Product Gas) ... 248
 13.4.4 Fuel and Energy Input .. 248
 13.4.5 Emissions to Air ... 249
 13.4.6 Life Cycle Inventory Input Data .. 250
13.5 Life Cycle Inventories of Gas Engine Co-generation .. 250
 13.5.1 System Characterisation .. 250
 13.5.2 Life Cycle Inventories for Biogas Co-generation with an Engine Power of 160 kWhel 251
 13.5.3 Life Cycle Inventories for Biogas Co-Generation on Agricultural Sites 254
 13.5.4 Production of electricity and heat from agricultural biogas for the year 2006 256
13.6 Cumulative Results and Interpretation .. 266
 13.6.1 Introduction .. 266
 13.6.2 Cumulative Results of Biogas Production Mix and Upgraded Biogas 267
 13.6.3 Cumulative Results for Co-Generation Processes .. 267
Abbreviations ... 269
Appendices: EcoSpold Meta Information ... 270
References .. 274

14 ETHANOL 99.7 % FROM BIOMASS ... 275
 Acknowledgement ... 275
 14.1 Introduction ... 275
 14.2 Reserves and Resources ... 275
Table of Contents

14.3 Use

- 14.3.1 Process description

14.4 System Characterisation

- 14.4.1 Introduction

14.5 Sugar beets to fermentation, CH

- 14.5.1 Process description
- 14.5.2 Data sources
- 14.5.3 Raw materials and auxiliaries
- 14.5.4 Energy
- 14.5.5 Transportation
- 14.5.6 Infrastructure and land use
- 14.5.7 Emissions to air
- 14.5.8 Emissions to water
- 14.5.9 Allocation of the co-products of the ethanol production
- 14.5.10 Life cycle inventory of ethanol production from sugar beets and data quality considerations

Appendix: EcoSpold Meta Information

- 14.6 Grass to fermentation, CH

Appendix: EcoSpold Meta Information

- 14.7 Whey to fermentation, CH

Appendix: EcoSpold Meta Information

- 14.8 Cumulative Results and Interpretation

Appendix: EcoSpold Meta Information

- 14.9 Ethanol, 99.7% in H2O from biomass, at distillation, CH

Appendix: EcoSpold Meta Information

- 14.10 Ethanol, 99.7% in H2O from biomass, at service station, CH

Appendix: EcoSpold Meta Information

- 14.11 Ethanol fermentation plant, CH
Table of Contents

14.11.1 Process ... 316
14.11.2 Land use ... 317
14.11.3 Infrastructure ... 318
14.11.4 Emissions to air .. 318
14.11.5 Waste processes .. 318
14.11.6 Life cycle inventory of an ethanol plant and data quality considerations 319
14.11.7 Cumulative Results and Interpretation .. 321

Appendix: EcoSpold Meta Information ... 323
References ... 324

15 ETHANOL 99.7% IN H₂O FROM SUGAR CANE .. 326

Acknowledgement .. 326
15.1 Reserves and Resources .. 326
15.2 System Characterisation .. 326
15.3 Sugar cane to fermentation, BR ... 327
15.3.1 Production Technologies .. 327
15.3.2 Raw materials and auxiliaries .. 327
15.3.3 Energy and burning of bagasse ... 328
15.3.4 Transportation .. 331
15.3.5 Infrastructure and land use ... 331
15.3.6 CO₂-uptake ... 331
15.3.7 Emissions to air .. 331
15.3.8 Wastewater .. 332
15.3.9 Co-products and Allocation ... 332
15.3.10 Life cycle inventory of the production of ethanol from sugar cane and data quality considerations .. 333
15.3.11 Cumulative Results and Interpretation .. 334

Appendix: EcoSpold Meta Information ... 336
15.4 Ethanol, 99.7 % in H₂O from sugar cane, at distillation, BR 336
15.4.1 Dehydration of the ethanol .. 336
15.4.2 Life cycle inventory of the supply of ethanol, 99.7% at distillation and data quality considerations .. 338
15.4.3 Cumulative Results and Interpretation .. 340

Appendix: EcoSpold Meta Information ... 341
15.5 Ethanol, 99.7 % in H₂O from biomass, production BR, at service station, CH 342
15.5.1 Transport to Switzerland .. 342
15.5.2 Regional storage .. 342
15.5.3 Life cycle inventory of the supply of ethanol and data quality considerations 343
15.5.4 Cumulative Results and Interpretation .. 345

Appendix: EcoSpold Meta Information ... 347
References ... 347

16 ETHANOL-BASED BIOFUELS .. 350

Acknowledgement .. 350
Summary .. 350
16.1 Introduction .. 350
16.2 Resources of sugar and ethanol .. 352
16.2.1 Resources of sugar .. 352
16.2.2 Resources of ethanol .. 352
Table of Contents

16.3 Characterisation of ethanol-based biofuels ... 354
16.4 Use and applications of ethanol-based biofuels ... 355
 16.4.1 Use in spark-ignition internal combustion engines ... 355
 16.4.2 Use in compression-ignition internal combustion engines 356
16.5 Ethanol from sugar beet molasses, CH ... 356
 16.5.1 System characterisation ... 356
 16.5.2 LCI of ‘Sugar refinery, Glo’ ... 360
 16.5.3 LCI of ‘Sugar beet, in sugar refinery, CH’ ... 361
 16.5.4 LCI of ‘Molasses, from sugar beet, in distillery, CH’ 363
16.6 Ethanol from potatoes, CH .. 364
 16.6.1 System characterisation ... 365
 16.6.2 LCI of ‘Potatoes, in distillery, CH’ .. 367
16.7 Ethanol from wood, CH ... 368
 16.7.1 System characterisation ... 369
 16.7.2 LCI of ‘Wood, in distillery, CH’ ... 370
16.8 Ethanol from rye, RER ... 374
 16.8.1 System characterisation ... 374
 16.8.2 LCI of ‘Rye, in distillery, RER’ ... 376
 16.8.3 LCI of ‘Ethanol, 99.7% in H2O, from biomass, at distillation, RER’ 377
16.9 Ethanol from sugarcane molasses, BR .. 378
 16.9.1 System characterisation ... 378
 16.9.2 LCI of ‘Sugarcane, in sugar refinery, BR’ .. 381
16.10 Ethanol from corn, US ... 385
 16.10.1 System characterisation ... 385
 16.10.2 LCI of ‘Corn, in distillery, US’ .. 386
 16.10.3 LCI of ‘Ethanol, 99.7% in H2O, from biomass, at distillation, US’ 388
16.11 Ethanol from sweet sorghum, CN .. 389
 16.11.1 System characterisation ... 389
 16.11.2 LCI of ‘Sweet sorghum, in distillery, CN’ .. 391
 16.11.3 LCI of ‘Ethanol, 99.7% in H2O, from biomass, at distillation, CN’ 393
16.12 Ethyl tert-butyl ether, RER ... 394
 16.12.1 System characterisation ... 394
 16.12.2 LCI of ‘Ethyl tert-butyl ether, from bioethanol, at plant, RER’ 395
 16.12.3 LCI of ‘Petrol, 4% vol. ETBE additive, at refinery, RER’ 396
 16.12.4 LCI of ‘Petrol, 15% vol. ETBE additive, at refinery, RER’ 397
16.13 Distribution of ethanol-based biofuels ... 397
 16.13.1 LCI of ‘Ethanol, 99.7% in H2O, production RER, at service station, CH’ 398
 16.13.2 LCI of ‘Ethanol, 99.7% in H2O, production US, at service station, CH’ 399
 16.13.3 LCI of ‘Ethanol, 99.7% in H2O, production CN, at service station, CH’ 399
 16.13.4 LCI of ‘Petrol, 5% vol. ethanol, from biomass, at service station, CH’ 400
 16.13.5 LCI of ‘Petrol, 85% vol. ethanol, from biomass, at service station, CH’ 401
 16.13.6 LCI of ‘Petrol, 4% vol. ETBE, production RER, at service station, CH’ 401
 16.13.7 LCI of ‘Petrol, 15% vol. ETBE, production RER, at service station, CH’ 401
16.14 Data Quality Considerations ... 402
16.15 Cumulative results and interpretation ... 403
 16.15.1 Introduction ... 403
 16.15.2 Selected LCI results and cumulative energy demand 403
16.16 Conclusions .. 408
Abbreviations ... 408
Glossary of terms ... 410
Table of Contents

- Acknowledgement 433
- Summary .. 433
- Introduction .. 433
- Resources of biodiesel and related feedstocks ... 435
 - Resources of rape seeds, soybeans and oil palm fruit 435
 - Biodiesel production in the World .. 436
 - Biodiesel production in Switzerland ... 437
- Characterisation of Energy Carrier .. 438
- Use and Application of Energy Carrier ... 441
- Description of the processes ... 441
 - General considerations ... 441
 - Description of the production processes .. 442
- Oil mill and vegetable oil esterification plant .. 443
 - System characterization .. 443
- Oil and methyl ester from rape seeds, CH .. 446
 - System characterization .. 446
- Oil and methyl ester from rape seeds, RER ... 451
 - System characterization .. 451
- Oil and methyl ester from palm fruit bunches, MY 458
 - System characterization .. 458
- Oil and methyl ester from soybeans, US .. 465
 - System characterization .. 465
- Oil and methyl ester from soybeans, BR .. 471
 - System characterization .. 471
- Vegetable oil from waste cooking oil, CH .. 474
 - System characterization .. 474
- Vegetable oil and methyl ester from waste cooking oil, FR 476
 - System characterization .. 476
- Distribution of oil-based biofuels .. 478
 - LCI of ‘Rape oil, at regional storage, CH’ ... 479
Table of Contents

18 SYNTHEtic BIOFUELS ... 505

Acknowledgement ... 505
Summary .. 505

18.1 Introduction ... 505

18.2 Resources of Raw Materials ... 506

18.3 Wood chips .. 509

18.3.1 Characterisation of wood chips .. 509
18.3.2 Applications and use of wood chips ... 510
18.3.3 System definition ... 510
18.3.4 LCI of ‘Waste wood chips, mixed, from industry, u=40%, at plant’ 510

18.4 Syngas from wood .. 511

18.4.1 Characterisation of syngas .. 511
18.4.2 Applications and use of syngas ... 514
18.4.3 System definition ... 516
18.4.4 Overall process performance (incl. methanol synthesis) 521
18.4.5 LCI of ‘Synthetic gas plant’ ... 525
18.4.6 LCI of ‘Synthetic gas, from wood, at fixed bed gasifier’ 525
18.4.7 LCI of ‘Synthetic gas, from wood, at fluidized bed gasifier’ 529
18.4.8 LCI of ‘Synthetic gas, production mix, at plant’ ... 532

18.5 Biomethanol from syngas ... 533

18.5.1 Characterisation of biomethanol .. 533
18.5.2 Applications and use of biomethanol ... 534
18.5.3 System definition ... 534
18.5.4 LCI of ‘Methanol, from synthetic gas, at plant’ ... 537
18.5.5 LCI of ‘Methanol, from biomass, at regional storage’ 540

18.6 Methane 96% vol. from syngas ... 541

18.6.1 Characterisation of methane from syngas ... 541
18.6.2 Applications and use of methane from syngas ... 541
18.6.3 System definition ... 542
18.6.4 LCI of ‘Methane, 96 vol.-%, from synthetic gas, wood, at plant’ 545

18.7 Data Quality Considerations .. 550

18.8 Cumulative Results and Interpretation ... 550
Table of Contents

[18.8.2] Selected LCI results .. 551
[18.9] Conclusions ... 553
Abbreviations .. 554
Glossary of terms ... 556
Appendices: EcoSpold Meta Information ... 558
References ... 563

<table>
<thead>
<tr>
<th>19</th>
<th>GASEOUS FUELS AT SERVICE STATION ... 567</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>... 567</td>
</tr>
<tr>
<td>Summary</td>
<td>... 567</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction ... 567</td>
</tr>
<tr>
<td>19.2</td>
<td>Characterisation of gaseous fuels ... 567</td>
</tr>
<tr>
<td>19.3</td>
<td>Life Cycle Inventory of distribution of biogas .. 568</td>
</tr>
<tr>
<td>19.4</td>
<td>Life Cycle Inventory of infrastructure .. 571</td>
</tr>
<tr>
<td>19.5</td>
<td>Life cycle inventories of natural gas and biogas at service station ... 572</td>
</tr>
<tr>
<td>19.5.1</td>
<td>System characterisation ... 573</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Characterisation of the service station ... 573</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Use of the service station ... 573</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Energy requirements .. 573</td>
</tr>
<tr>
<td>19.5.5</td>
<td>Emissions of service stations .. 574</td>
</tr>
<tr>
<td>19.5.6</td>
<td>Life cycle inventory of gas delivery at the service station .. 575</td>
</tr>
<tr>
<td>19.5.7</td>
<td>EcoSpold Meta Information .. 576</td>
</tr>
<tr>
<td>19.6</td>
<td>Data Quality Considerations ... 578</td>
</tr>
<tr>
<td>19.7</td>
<td>Cumulative Results and Interpretation .. 578</td>
</tr>
<tr>
<td>19.7.1</td>
<td>Introduction ... 578</td>
</tr>
<tr>
<td>19.7.2</td>
<td>LCI results and cumulative energy demand .. 578</td>
</tr>
<tr>
<td>References</td>
<td>... 579</td>
</tr>
</tbody>
</table>

| II.iv. | TRANSPORT SERVICES ... 580 |

<table>
<thead>
<tr>
<th>20</th>
<th>ROAD TRANSPORT SERVICES BASED ON BIOFUELS AND ALTERNATIVE FUELS .. 581</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>... 581</td>
</tr>
<tr>
<td>Summary</td>
<td>... 581</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction ... 581</td>
</tr>
<tr>
<td>20.2</td>
<td>Characterisation and Application of Transport Services - Biofuels and Alternative Fuels 582</td>
</tr>
<tr>
<td>20.3</td>
<td>System Characterisation ... 582</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Scope of the Project ... 582</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Functional Unit ... 582</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Architecture of Inventories ... 582</td>
</tr>
<tr>
<td>20.3.4</td>
<td>Data Requirements and Assumptions ... 583</td>
</tr>
<tr>
<td>20.4</td>
<td>Life Cycle Inventories Vehicle Operation - Biofuels and Alternative Fuels 583</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Functional Unit ... 583</td>
</tr>
<tr>
<td>20.4.2</td>
<td>System Boundaries ... 583</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Method ... 584</td>
</tr>
<tr>
<td>20.4.4</td>
<td>Fuel Consumption ... 584</td>
</tr>
<tr>
<td>20.4.5</td>
<td>Tail Pipe Emissions ... 585</td>
</tr>
<tr>
<td>20.4.6</td>
<td>Non-Exhaust Emissions .. 586</td>
</tr>
<tr>
<td>20.4.7</td>
<td>Summary Operation – Biofuels and Alternative Fuels ... 588</td>
</tr>
</tbody>
</table>
Table of Contents

20.5 Life Cycle Inventories of Transportation - Biofuels and Alternative Fuels 589
 20.5.1 Functional Unit ... 589
 20.5.2 Method .. 589
 20.5.3 Summary Transport - Biofuels and Alternative Fuels ... 589

20.6 Data Quality Considerations ... 590

20.7 Cumulative results and interpretation .. 591
 20.7.1 Introduction ... 591
 20.7.2 Operation .. 592
 20.7.3 Transport ... 592

Appendices: EcoSpold Meta Information .. 594
Abbreviations ... 599
References .. 599

21 LIFE CYCLE INVENTORIES FOR SWISS PASSENGER CARS .. 601

Acknowledgement .. 601
Summary .. 601

21.1 Introduction ... 601

21.2 Characterisation of Passenger Car Transport Services ... 602

21.3 Use of Passenger Car Services ... 604

21.4 Life Cycle Inventories for the Operation of Diesel and Petrol Passenger Cars 604
 21.4.1 System Characteristics ... 604
 21.4.2 Fuel Consumption .. 605
 21.4.3 Fuel Quality and Fuel Consumption Dependent Emissions .. 606
 21.4.4 Regulated Emissions and Further Specifications .. 606
 21.4.5 Non-Regulated Emissions ... 609

21.5 Life Cycle Inventories of ETBE-Blended Petrol Cars .. 610
 21.5.1 System Characteristics ... 610
 21.5.2 Fuel Consumption .. 610
 21.5.3 Emissions .. 611
 21.5.4 Unit Process Raw Data ... 613
 21.5.5 Data Quality Considerations ... 615

21.6 Life Cycle Inventories of Transportation ... 616
 21.6.1 System characteristics ... 616
 21.6.2 Unit process raw data ... 616
 21.6.3 Data Quality Considerations ... 616

21.7 Cumulative Results and Interpretation .. 616
 21.7.1 Introduction ... 616
 21.7.2 Cumulative Results of Operation of Passenger Cars .. 617

21.8 Abreviations and Glossary .. 619

21.9 References .. 620

II.V. WASTE MANAGEMENT SERVICES .. 627

22 INCINERATION OF BIOWASTE AND SEWAGE SLUDGE .. 628

Acknowledgement .. 628
Summary .. 628

22.1 Introduction ... 628

22.2 Reserves and Resources of Biowaste and Sewage Sludge ... 629

22.3 Characterisation of Biowaste and Sewage Sludge .. 629

ecoinvent-report No. 17 - xv -
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4</td>
<td>Use of Biowaste and Sewage Sludge</td>
<td>630</td>
</tr>
<tr>
<td>22.5</td>
<td>System characterisation</td>
<td>631</td>
</tr>
<tr>
<td>22.5.1</td>
<td>Characterization of unit processes</td>
<td>631</td>
</tr>
<tr>
<td>22.5.2</td>
<td>Sludge dewatering process description</td>
<td>632</td>
</tr>
<tr>
<td>22.5.3</td>
<td>Municipal incineration process description</td>
<td>632</td>
</tr>
<tr>
<td>22.5.4</td>
<td>General Allocation Choices</td>
<td>633</td>
</tr>
<tr>
<td>22.5.5</td>
<td>General Data Quality Considerations</td>
<td>634</td>
</tr>
<tr>
<td>22.6</td>
<td>Life cycle inventory of biowaste incineration in municipal waste incinerator, current</td>
<td>634</td>
</tr>
<tr>
<td>22.7</td>
<td>Life cycle inventory of biowaste incineration in municipal waste incinerator, future</td>
<td>638</td>
</tr>
<tr>
<td>22.8</td>
<td>Life cycle inventory of digested sewage sludge incinerization in municipal waste incinerator, current</td>
<td>643</td>
</tr>
<tr>
<td>22.9</td>
<td>Life cycle inventory of digested sewage sludge incinerization in municipal waste incinerator, future</td>
<td>647</td>
</tr>
<tr>
<td>22.10</td>
<td>Life cycle inventory of raw sewage sludge incineration in municipal waste incinerator, current</td>
<td>650</td>
</tr>
<tr>
<td>22.11</td>
<td>Cumulative results and interpretation</td>
<td>653</td>
</tr>
<tr>
<td>22.11.1</td>
<td>Introduction</td>
<td>653</td>
</tr>
<tr>
<td>22.11.2</td>
<td>Heat from waste disposal</td>
<td>653</td>
</tr>
<tr>
<td>22.11.3</td>
<td>Electricity from waste disposal</td>
<td>654</td>
</tr>
<tr>
<td>22.11.4</td>
<td>Biomass waste disposal</td>
<td>655</td>
</tr>
<tr>
<td>22.12</td>
<td>Conclusions</td>
<td>656</td>
</tr>
<tr>
<td>23</td>
<td>INCINERATION SEWAGE SLUDGE IN CEMENT KILN</td>
<td>665</td>
</tr>
<tr>
<td>23.1</td>
<td>Summary</td>
<td>665</td>
</tr>
<tr>
<td>23.2</td>
<td>Reserves and Resources of Sewage Sludge</td>
<td>665</td>
</tr>
<tr>
<td>23.3</td>
<td>Characterisation of sewage sludge</td>
<td>665</td>
</tr>
<tr>
<td>23.4</td>
<td>Use of Sewage Sludge</td>
<td>666</td>
</tr>
<tr>
<td>23.5</td>
<td>System characterisation</td>
<td>666</td>
</tr>
<tr>
<td>23.5.1</td>
<td>Characterization of unit processes</td>
<td>666</td>
</tr>
<tr>
<td>23.5.2</td>
<td>Sludge dewatering process description</td>
<td>667</td>
</tr>
<tr>
<td>23.5.3</td>
<td>Sludge drying process description</td>
<td>667</td>
</tr>
<tr>
<td>23.5.4</td>
<td>Cement kiln incineration process description</td>
<td>667</td>
</tr>
<tr>
<td>23.5.5</td>
<td>Allocation Choices</td>
<td>669</td>
</tr>
<tr>
<td>23.5.6</td>
<td>General Data Quality Considerations</td>
<td>669</td>
</tr>
<tr>
<td>23.6</td>
<td>Life cycle inventory of raw sewage sludge incineration in cement kiln</td>
<td>670</td>
</tr>
<tr>
<td>23.6.1</td>
<td>Expenditures for the cement plant</td>
<td>672</td>
</tr>
<tr>
<td>23.7</td>
<td>Cumulative results and interpretation</td>
<td>677</td>
</tr>
<tr>
<td>23.7.1</td>
<td>Introduction</td>
<td>677</td>
</tr>
<tr>
<td>23.7.2</td>
<td>Raw sewage sludge incineration</td>
<td>677</td>
</tr>
<tr>
<td>23.8</td>
<td>Conclusions</td>
<td>679</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>Glossary of terms</td>
<td>679</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Appendices: EcoSpold Meta Information ... 680
References .. 681

II.VI. CHEMICALS ... 684

24 ALLYL CHLORIDE, HYDROCHLORIC ACID, 36%, IN WATER, AND DICHLOROPROPENE,
FROM REACTING CHLORINE AND PROPYLENE ... 685

Acknowledgement .. 685
24.1 Introduction .. 685
24.2 Reserves and Resources of Allyl Chloride ... 685
24.3 Characterisation of Allyl Chloride ... 685
24.4 Use of the Product ... 686
24.5 System Characterisation ... 686
24.6 Life Cycle Inventories (Overcash 1998 – 2004) ... 687
 24.6.1 Raw materials and auxiliaries ... 687
 24.6.2 Energy .. 687
 24.6.3 Emissions to air ... 688
 24.6.4 Emissions to water .. 688
 24.6.5 Infrastructure and land use ... 688
24.7 Allocation of co-products .. 688
24.8 Overview of input/output data and data quality considerations 689
24.9 Cumulative Results and Interpretation ... 689
 24.9.1 Hydrogen chloride ... 690
Appendix: EcoSpold Meta Information .. 692
References .. 692

25 EPICHLOROHYDRIN, TRICHLOROPROPANE AND CALCIUM CHLORIDE FROM THE
HYPOCHLORINATION OF ALLYL CHLORIDE .. 694

Acknowledgement .. 694
25.1 Introduction .. 694
25.2 Reserves and Resources of Epichlorohydrin ... 694
25.3 Characterisation of Epichlorohydrin .. 694
25.4 Use of Epichlorohydrin ... 695
25.5 System Characterisation (Overcash 1998 – 2004) ... 695
25.6 Life Cycle Inventories (Overcash 1998 – 2004) ... 696
 25.6.1 Raw materials and auxiliaries ... 696
 25.6.2 Energy .. 696
 25.6.3 Emissions to air ... 696
 25.6.4 Emissions to water .. 696
 25.6.5 Infrastructure and land use ... 697
25.7 Allocation of co-products .. 697
25.8 Overview of input/output data and data quality considerations 697
25.9 Cumulative Results and Interpretation ... 697
Appendix: EcoSpold Meta Information .. 700
References .. 700

26 POTASSIUM HYDROXIDE, 90% PURE .. 702

Acknowledgement .. 702
Table of Contents

26.1 Introduction ... 702
26.2 Reserves and Resources of Potassium Hydroxide ... 702
26.3 Characterisation of Potassium Hydroxide .. 702
26.4 Use / Application of Potassium Hydroxide .. 702
26.5 System Characterisation (Overcash, 1998 - 2004) ... 703
26.6 Life Cycle Inventory of Potassium Hydroxide, 90% pure ... 703
 26.6.1 Precursor materials ... 703
 26.6.2 Energy usage ... 704
 26.6.3 Emissions .. 704
 26.6.4 Infrastructure and transports ... 704
26.7 Overview of input/output data and data quality considerations ... 704
26.8 Cumulative Results and Interpretation ... 705
Appendix: EcoSpold Meta Information .. 706
References ... 706

27 Synthetic Glycerine ... 708
 Acknowledgement .. 708
 27.1 Introduction ... 708
 27.2 Reserves and Resources of Synthetic Glycerine ... 708
 27.3 Characterisation of Synthetic Glycerine ... 708
 27.4 Use of Synthetic Glycerine ... 708
 27.5 System Characterisation ... 709
 27.6 Life cycle inventory of glycerine (Overcash, 1998 - 2004) .. 709
 27.6.1 Precursor materials ... 709
 27.6.2 Energy usage ... 710
 27.6.3 Emissions ... 710
 27.6.4 Infrastructure and transports ... 710
 27.7 Cumulative Results and Interpretation .. 711
Appendix: EcoSpold Meta Information .. 712
References ... 713

28 Naphtha, to Molecular Sieve ... 714
 Acknowledgement .. 714
 28.1 Introduction ... 714
 28.2 Characterisation of the production process ... 716
 28.3 Use .. 717
 28.4 System Characterisation ... 717
 28.5 Molecular sieve separation process ... 719
 28.5.1 Data sources .. 719
 28.5.2 Raw materials and auxiliaries .. 719
 28.5.3 Energy .. 719
 28.5.4 Transportation ... 719
 28.5.5 Infrastructure and land use .. 719
 28.5.6 Emissions to air .. 720
 28.5.7 Emissions to water ... 720
 28.6 Allocation of the co-products of the molecular sieve separation of naphtha 720
 28.7 Data Quality Considerations ... 721
Table of Contents

28.8 Cumulative Results and Interpretation ... 723
28.8.1 Introduction .. 723
28.8.2 Molecular sieve separation of naphtha .. 723
Appendix: EcoSpold Meta Information ... 725
References .. 726
Part I

I. Methodological Remarks

Author: Niels Jungbluth, Mireille Faist Emmenegger, ESU-services Ltd.
1 Introduction

1.1 Goal of the project

Today, transportation relies almost entirely on oil-based fuels and is responsible for about 30% of the world’s fossil fuel consumption. According to the principles of sustainability, a modern society should preserve non-renewable energy sources and replace them with renewable energy. The depletion of fossil energy reserves and the associated environmental impacts are the two main reasons that lead to consider the use of alternative fuels in the sector of transportation.

Fuels derived from biomass, also referred to as biofuels, are not only potentially renewable, but are also sufficiently similar to fossil fuels (which also have their origin in biomass) to provide direct substitution. It seems also to be a promising alternative to fossil fuels in the short term.

The goal of this project, which has been initiated by the Swiss Federal authorities BFE, BLW and BAFU, is to investigate life cycle inventory data of several energy products from biomass. These data shall complement existing datasets in the ecoinvent database and should become available in a future version of this database. Therefore the same methodology is used as in the ecoinvent project (Frischknecht et al. 2007a).

Some types of biomass and their energy products have already been investigated for the ecoinvent database, e.g. agricultural products (Nemecek et al. 2007), renewable materials (Althaus et al. 2007b) or wood products (Werner et al. 2007) as well as their use in combustion processes (Bauer 2007). Nevertheless many possible uses of biomass for energy purposes were so far not covered by the database.

Fig. 1.1 provides a systematic overview for the different types of bioenergy that are of interest. In general, four stages of production can be distinguished (provision of the biomass, conversion to a fuel, distribution and use).

![Diagram of bioenergy products and their possible uses](image)

Fig. 1.1 Overview for the most important bioenergy products and their possible uses

In a pre-study the existing datasets of the ecoinvent database have been systematically organized (Jungbluth & Frischknecht 2004). The study helped to identify all missing process chains and unit processes in order to be able to define the bioenergy products of interest for the situation in Switzerland.

The following products are already covered with the ecoinvent data v1.2:
1. Introduction

- Forestry
- Agricultural products
- Wood fuels
- Use of wood for heating and CHP

Within the first part of this project, the production and use of ethanol, biogas, BTL-fuels (biomass to liquid i.e. methanol) and plant oils have been investigated. Therefore agricultural products that are needed for these fuels (grass, straw, rape seeds) are included in the analysis. The use of biofuels in different means of transportation is investigated as well.

In the second part of the project a specific focus has been laid on biofuels imported to Switzerland. Therefore basic LCI data have been collected for biomass production and biofuel conversion in different countries.

The calculation of cumulative results is based on ecoinvent data v1.2. It has been executed by the ecoinvent Manager with a copied version of the original database and with the same calculation routines.

It was not possible to cover all possible uses of bioenergy within this project due to financial limitations. The most important gaps that remain are the following:

- Full investigation of all possible production routes. Only the most important routes have been investigated.
- Use of some bioenergy carriers, e.g. plant oil, in heating and combined heat- and power plants.

In a second part of the project different options for the use of bioenergy are compared and analysed in a full life cycle assessment (Dinkel 2007; Kägi et al. 2007; Zah et al. 2007).

1.2 Natural conditions for biomass production in Switzerland

Switzerland has an area of 41'285 km². Jura, Lowlands and the Alps are the three geographical main regions. Switzerland has a very high population density: on average, about 183 people live on 1 km². The difference between the regions are however high: in the Alps, which have a great share of the country’s surface, lives only about 10% of the population.

The alpine arch has a length of 800 km and a broadness of ca. 200 km as well as an average altitude of 2500 m over sea and acts as a climate barrier. Climate in the Swiss Alpine region is divided in the North and the South region. In the Northern part of the Alps maritime climate is dominating. The Southern part of the Alps is dominated by Mediterranean climate, which mean milder winters. Some valleys are protected against Northern and Southern precipitation activities. Consequence is a dry climate: typical for this kind of climate are Unterwallis and Engadin valleys.

The following table gives some key figures of the climate in Switzerland in 2003.

1 http://www.swissworld.org/ger/swissworld.html?siteSect=201&sid=4147667&cKey=1061372946000&rubricId=10010

2 source: Meteoschweiz, www.meteoschweiz.ch
1. Introduction

Tab. 1.1 Key figures of the climate in Switzerland (average 1961-1990).

<table>
<thead>
<tr>
<th>Location</th>
<th>altitude (m. o. s.)</th>
<th>Sunshine duration (h)</th>
<th>Precipitation quantity (mm)</th>
<th>Temperature of air (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basel</td>
<td>316</td>
<td>1599</td>
<td>778</td>
<td>9.6</td>
</tr>
<tr>
<td>Bern</td>
<td>565</td>
<td>1638</td>
<td>1028</td>
<td>8.2</td>
</tr>
<tr>
<td>Chur</td>
<td>555</td>
<td>1702</td>
<td>814</td>
<td>8.7</td>
</tr>
<tr>
<td>Davos</td>
<td>1590</td>
<td>1660</td>
<td>1082</td>
<td>2.8</td>
</tr>
<tr>
<td>Genève</td>
<td>420</td>
<td>1694</td>
<td>970</td>
<td>9.8</td>
</tr>
<tr>
<td>Locarno Monti</td>
<td>366</td>
<td>2155</td>
<td>1668</td>
<td>11.5</td>
</tr>
<tr>
<td>Lugano</td>
<td>273</td>
<td>2026</td>
<td>1545</td>
<td>11.6</td>
</tr>
<tr>
<td>Luzern</td>
<td>456</td>
<td>1322</td>
<td>1171</td>
<td>8.8</td>
</tr>
<tr>
<td>Neuchâtel</td>
<td>485</td>
<td>1549</td>
<td>932</td>
<td>9.3</td>
</tr>
<tr>
<td>Sion</td>
<td>482</td>
<td>1990</td>
<td>598</td>
<td>9.2</td>
</tr>
<tr>
<td>St Gallen</td>
<td>779</td>
<td>1390</td>
<td>1248</td>
<td>7.4</td>
</tr>
<tr>
<td>Zürich</td>
<td>556</td>
<td>1482</td>
<td>1086</td>
<td>8.5</td>
</tr>
</tbody>
</table>

source: http://www.meteoschweiz.ch/de/Daten/Messwerte/IndexMesswerte.shtml, downloaded 3.10.2005

The length of growing period is 115-180 days in the Subalpine zone (1700-2400 m.o.s.) and 180-245 days in the mountainous zone (1000-1700 m.o.s.). Typical soils in the Alps are silica rocks with little humus.

1.3 Reserves and resources for bioenergy in Switzerland

Switzerland has mostly small sized farms with an average of 16.2 ha (19.9 ha when considering only full-time farmers). The intensity of production is therefore relatively low. Due to climatic differences between Lowlands and Alps and between South and North, the agriculture is regionally specialised. In the Alps there is mostly animal production as well as forestry.

Agriculture in the Alps is strongly dependent from subsidies. Subsidies are however linked to ecological requirements. Agriculture in the Lowlands is e.g. following the principles of integrated production (IP) as a consequence of the policy on subsidies. About 10% (102'000 ha in 2002 from the total of 1.07 Mio ha) is organic agriculture (mainly grasslands). Important amounts of agricultural products, e.g. fodder and food are imported to Switzerland. Cheese is an important exported product.

Agriculture in Switzerland employs about 200'000 persons. Hersener and Meier (1999) assume that fallow land will grow to 6’000 ha in 2010. This increase takes place at the expense of meadows.

Due to the nature of its mountainous landscape, Switzerland is a country of large forested lands. Forest residues are the primary biomass resource in Alpine countries. Wood industry by-products are widely used for energy production in the wood processing industry, district heating and for pellets production. Wood industry by-products potentials for transportation fuels are limited. No straw surplus for energy uses exists due to the fact that all straw is used for agricultural purposes.

In the most actual study for Switzerland (BFE/EWG 2004) the authors use several definitions of potential:

- Supply potential (Angebotspotential): generic term for theoretical biomass potential and realisable resp. ecological potential biomass potential for energy use.

3 http://www.biodiversitymonitoring.ch/pdfs/M5_Datensatz_V2.pdf, 3.5.05
4 http://www.bauernverband.ch/de/markt_preise_statistik/betrieb/se_2003_0112.pdf, figure for 2003, 3.5.05
1. Introduction

- Theoretical (biomass) potential: grown biomass on arable land and material from secondary production thereby incurred in national economy.
- Ecological net production potential: biomass that can be produced on a sustainable and efficient (positive energy balance) way in the agriculture and forestry.
- Potential of disposal with energy recovery: share of industrial and urban biomass residues and waste that can be used for production of energy.

1.3.1 Energy crops

Several energy crops can possibly grow in Switzerland. Hersener and Meier (1999) calculate with following yields for energy crops:

- Rapeseed 3 t DM/ha
- Miscanthus 18 t DM/ha
- Hemp 12 t DM/ha
- Kenaf 3 t DM/ha
- Buffer area 3 t DM/ha

According to (BFE/EWG 2004), the share of energy crops is expected to increase to 5% of the open agricultural crop land, which corresponds to 20’000 ha until 2025, with a yield of about 10 t DM/ha. From 2025 to 2040 the authors evaluate the increase to be 10% of the open agricultural crop land, which corresponds to 45’000 ha. This increase occurs at the expense of intensively farmed crops like turnips, cereals, maize and intensive meadows.

1.3.2 Meadows

This category includes fallow land, extensive farmed meadows and permanent meadows (which have the biggest share of this category). Alpine meadows' potential is considered in the category "a) forest", as the increase in forest area occurs at the expense of alpine meadows. The yield of meadows for energy use is estimated by the authors of (BFE/EWG 2004) at 1% of yearly total yield until 2025. Optimistic scenarios evaluate the potential to be 3%.

1.3.3 Agriculture residues

Arable land in Switzerland covers 26% of agricultural land. Cereals are not dominant.

Tab. 1.2 Cereal production in Switzerland (Hersener & Meier 1999)

<table>
<thead>
<tr>
<th>Arable land</th>
<th>Cereal area</th>
<th>Cereals share in arable land</th>
<th>Cereals yields 1998-2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000ha</td>
<td>1000ha</td>
<td>%</td>
<td>t/ha</td>
</tr>
<tr>
<td>413</td>
<td>136.1</td>
<td>30</td>
<td>6.1</td>
</tr>
</tbody>
</table>

The following agricultural products and residues for energy use are taken into consideration in Switzerland:

- Rape seed oil, miscanthus, hemp, grass, hedges

1. Introduction

- Products from landscape care (areas of nature protection, residues of mowing of reeds etc.),
- Straw and other harvest residues.

Actually about 3,700 t DM (dry matter) of agricultural products (0.1 PJ) and 7,800 t DM (0.1 PJ) agricultural residues are used for energy production in Switzerland. This corresponds to 0.2 PJ primary energy. Hersener evaluate that the total potential of agricultural products is up to 305’000 t DM (4.6 PJ), of products of landscape care to 25’000 t DM (0.4 PJ) and agricultural residues to 38’000 t DM (0.6 PJ). This would raise available primary energy to 5.6 PJ. The ecological potential of agricultural products and residues in the future is estimated at 5.6 PJ (Hersener & Meier 1999).

Straw is used in Switzerland for litter and must even be imported (Hersener & Meier 1999). There is no straw surplus in Switzerland. Straw in dung from litter can be used as energy, however only in power plants bigger than at least 500 kWth. Due to the structure of agriculture and restricted possible sites, the share of straw, which can be used as energy in dung, must be estimated to be only 1% (Hersener & Meier 1999).

1.3.4 Forestry

Actually, about 10% of the Swiss forests are used for energy production. The total energy in biomass products of forests, orchards and vineyards was 17.7 PJ in 1998. The forest has two kinds of potentials: an increase in the harvest use and an increase in the harvest itself. From the first one (1.8*10^6 m^3 harvested wood that actually stay in the forest) the potential is evaluated to be about 1.2*10^6 m^3 (2/3 of this quantity), which corresponds to about 9 PJ/a. For the second potential the authors calculate with the 4.2*10^6 m^3 of forest increment that are at present not harvested. From these also 2/3 are evaluated to be possible to harvest, which represent 21.7 PJ/a. Production of bark in the year 1999 was at the level of 0.7 Mm^3 (4.83 PJ) and utilization for energy at 0.4 Mm^3. Thus surplus of bark that could be used equals 0.3 Mm^3 (2.07 PJ) (Hersener & Meier 1999).

For woody crops and hedges the potential is evaluated to be 0.35*10^6 m^3, which corresponds to 2.8 PJ/a.

With an increase in the degree of utilization of forest area, groves, orchards and vineyards, the potential of biomass in the future would be 44 PJ, thereof the biggest share would be from forest areas (BfS/BUWAL 2003).

1.3.5 Wood industry by-products

The recycling rate of paper and waste wood as well as utilization grade is already high, so that there is only little potential of increase for this category. Some studies estimate that waste wood and waste from the paper/cardboard industry used for energy production amounted to 21 PJ in 2001. The possible increase in the degree of utilization of these residues is estimated as low, as recovery grade and utilization grade are already quite high (Hersener & Meier 1999). Therefore the calculated ecological potential for 2040 is 24.2 PJ, only 3.4 PJ more than in 2001.

According to national studies (BfS/BUWAL 2003) wood industry by-products production amounts to about 0.8 Mm^3. These are already fully used.

1.3.6 Whey

About 1.5 mio. m^3 of whey are produced in Switzerland per year (Binggeli & Guggisberg 2004; Scheurer & Baier 2001). Actually about 90% of waste of the food industry goes to the animal husbandry and is used as fodder (Scheurer & Baier 2001). Alternative use for whey is the production of biogas or bioethanol. According to (BFE/EWG 2004), the actual use of food industry waste for energy
production is about 3% (of all waste). They expect this share to stay quite constant and grow only to 5%. The same study cites other (more optimistic) sources which expect the share of food industry waste for energy production to grow to 20%.

1.3.7 Development perspectives

The position paper of the Swiss Agency for Environment, Forests and Landscape (SAEFL) on the energetic use of energy crops shows that the intensive production is not favoured any more. The energetic use of energy crops from extensively farmed areas like meadows, ecological buffer area, set-aside land etc. is however welcomed (Binggeli & Guggisberg 2003).

In the context of a common project of the Swiss Federal Office for Energy with the Swiss Agency for Environment, Forests and Landscape, the most important process chains of the production of energy out of biomass have been studied and compared. The experiences with pilot and demonstration plants show that the general framework is of great importance for the development of the energetic use of biomass. The following points are discussed to promote and increase the use of biomass for energy production:

- Electricity redelivery tariff, tax on CO2, promoting programs
- Exemption of tax for biofuels
- General promoting of biofuels and their sources

1.3.8 Economical feasibility

BFE/EWG (2004) studied the costs of the production of bioethanol on the basis of ligno-cellulose biomass in Switzerland. Borregard Schweiz AG is the biggest producer of ethanol in Switzerland with a yearly production of 11 million litres ethanol. It plans a new plant that will produce bioethanol out of ligno-cellulose by 2010. The costs of the production of bioethanol is divided in feedstock transport costs (14%), feedstock non-transport costs (30%), investment costs (43%), fixed operating costs (9%), variable operating costs (4%). The total price in 2010 is estimated to be 1.46 CHF/l (comparison: conventional gasoline would be 1.37 CHF/l), in 2025 1.15 CHF/l (conventional gasoline 1.87 CHF/l). The results depend of course on assumptions on the development of the price of conventional gasoline.

BFE/EWG (2004) also studies the costs of production of bio-diesel from Fischer-Tropsch process. The costs (assuming that bio-diesel is exempted from taxes) are 0.15 CHF/kWh in 2010 (conventional diesel: 0.14 CHF/kWh), in 2025 also 0.15 CHF/kWh, conventional diesel however being more expensive (about 0.20 CHF/kWh). The authors also calculate the costs in CHF/km for a VW Golf Trendline using bio-diesel in 2010 (about 0.54 CHF/km).

The authors of BFE/EWG (2004) conclude that at present ethanol is far from being competitive with gasoline. The tax on alcohol would need to be reduced compared to gasoline so as to allow bioethanol to be competitive on the vehicle fuel market. They also conclude that Fischer-Tropsch technology using biomass as a feedstock may become a competitive option. It is however depending on the condition that the costs of biomass should be decreasing below its actual projection (4 cts/kWh). A major constraint for the implementation of biomass-based FT process in industrial scale would be the competition of biomass resource with other biomass energy technologies which may turn out to be less capital intensive and offer lower production costs in short to medium term. A detailed assessment of future availability and cost of biomass is necessary for an economic assessment of the FT-biofuels technology.

6 See e.g. www.choren.de for information on the Choren-process for producing BTL-fuel.
1.3.9 Restrictions (policies and markets)

The Swiss agricultural policy defines the current goals, which are to maintain a multifunctional agriculture with food production. It can be assumed therefore that grassland will be mostly used for animal production also in the future and that the energy production with biomass will stay marginal.

BFE/EWG (2004) sees the most relevant developments in the biomass use for energy goals in the production of heat from wood furnaces and of electricity from biomass in wood gasification and biogas plants. In 2000 the confederation stopped to subsidize wood furnaces. Now only a few cantons are granting subsidies for this kind of heating system. The confederation encourages the production of electricity from biomass. However, the plant operator has to deliver the electricity produced through the electrical power supplier.

The use of forest area is ruled by the “forest law” in Switzerland (Schweizerisches Waldgesetz), which defines the sustainable use of the Swiss forests. The total forest area is protected. Wood wastes from wood industry are already used as a raw material in other industries. In the future a competitive situation will occur between use in energy production and in material recycling.

The development of the production of biofuels has many constraints: the technology is not yet mature and the potential of biomass production in Switzerland for this application has not been studied yet. As the agriculture area isn't sufficient for the food production for the whole population and as food imports are already necessary, it cannot be expected that big areas in Switzerland can be used for energy crops like miscanthus. Forest area is however increasing, mostly in the Alpine regions.

The Swiss government plans a revision of the tax law on mineral oil. Important for further development of biofuels market in Switzerland is the foreseen tax exemption for biofuels, which would become effective on the 1.1.2007. In the same time the tax on fossil fuels would be raised, so that demand for biofuels should increase.

1.3.10 Import of biomass and biofuels

At the moment there is an ongoing discussion in Switzerland about the opening of the market for the importation of biofuels. Tab. 1.3 shows the major types of biofuels that might be imported to Switzerland in the near future.

Tab. 1.3 Possible bioenergy products that might be imported to Switzerland and their origin country

<table>
<thead>
<tr>
<th>Product</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas</td>
<td>Imports improbable</td>
</tr>
<tr>
<td>Methanol</td>
<td>Imports improbable</td>
</tr>
<tr>
<td>RME</td>
<td>DE, FR, AT, IT</td>
</tr>
<tr>
<td>Biogenic waste oil</td>
<td>DE, FR, AT, IT</td>
</tr>
<tr>
<td>BTL</td>
<td>Only large-scale production makes sense. Thus imports are probable, but countries cannot be identified yet.</td>
</tr>
<tr>
<td>Ethanol, from sugar cane</td>
<td>BR (60% of today world production), IN, CN</td>
</tr>
<tr>
<td>Ethanol, from corn</td>
<td>US (40% of today world production), CN</td>
</tr>
<tr>
<td>Ethanol, from sweet sorghum</td>
<td>CN</td>
</tr>
<tr>
<td>ETBE</td>
<td>DE</td>
</tr>
<tr>
<td>Palm oil methyl ester</td>
<td>South and Central America, eg. BR, South-East Asia, e.g. Indonesia</td>
</tr>
</tbody>
</table>

7 see also http://www.zoll.admin.ch/d/gesetze/minoestgesetz/minoestgesetz.php
1.3.11 Summary

In Switzerland the distribution of biomass potential shows that forestry residues and wood industry by-products dominate with over 70% due to the high share of forestry in the country and the high rate of wood felling. However, forestry residues and wood by-products are currently used for energy production and in the wood processing industry. Thus only a limited market surplus is expected. There are no significant surpluses of agriculture residues. An overall increase in the use of biofuels in Switzerland is therefore only possible with the import of bioenergy products.

1.4 Characterisation of materials, energy carriers and products

The characterisation of the different products and energy carriers investigated in this project can be found in the individual chapters of part II in this report. It includes a clear characterisation of the products or fuels concerning the elemental analysis, heating value and density.
2 General methodology

The methodology for the investigation of life cycle inventory data of different unit processes has been described in detail in the methodology report of the ecoinvent project (Frischknecht et al. 2007a) and was used in this study. Thus, all unit processes are compatible with the ecoinvent datasets. For readers, who are not familiar with this methodology, it is recommended to read the methodology report before working with the unit process datasets shown in this report.

For single unit processes of this project the specific methodology for similar processes has been used. For instance, the investigation of agricultural products follows the guidelines of (Nemecek et al. 2007), the investigation of chemicals (Althaus et al. 2007a), the investigation of transport services (Spielmann et al. 2007). Biogas distribution was assessed using data from (Faist Emmenegger et al. 2003).

The following sections describe only some common conventions that are of specific relevance for the systematic investigation of bioenergy fuels, products and services in this project. Specific methodological aspects for single unit processes are described in the subsequent chapters of part II in this report.

2.1 Time frame of the investigation

This project started in late 2004. All datasets should describe as far as possible the supply situation in Switzerland in the year 2004. This time frame is in contrast to reference year 2000 that has been chosen for the unit process datasets in ecoinvent data v1.2. Many of the processes investigated for bioenergy are emerging technologies. For a fair comparison with existing technologies it is important to consider the technological status and environmental impacts for plants working under real market conditions. Thus the most recent reference year has been chosen. If specific products are not yet introduced to the market, an assumption is made for the situation after the introduction to the market.

2.2 Plant size and assessment for emerging technologies

If plants only exist on a laboratory or pilot scale, assumptions are taken for a future scenario with a realistic plant size for a production in Switzerland. Therefore data from other countries or from small-scale plants have been used in this case. All assumptions and possible variations are documented in the EcoSpold format and in the report. Uncertainties due to such scenarios are considered in the calculation of the standard deviation.

2.3 Infrastructure for conversion processes

Data of the infrastructure of bioenergy conversion processes are rarely available. If no information is available, a rough assumption with the dataset developed for “facilities, chemical production” is used (Althaus et al. 2007a). This process is used with a standard input of 4.0 E-11 unit/kg and includes the dismantling of the plant. The pedigree matrix with (4,5,na,na,na,na) is used to determine the uncertainty for this rough estimation.

The lifetime of infrastructure of conversion processes is estimated with 50 years as a default value if specific information is not available. For the construction time 2 years are assumed.

2.4 Transports of biomass to the conversion plant

The transport distance of biomass from the point of harvest or formation to the conversion plant depends on the actual capacity of the plant and the potential of the necessary biomass resources in the
surrounding area. This information is often not available. As a standard distance for the delivery of biomass from the field or the farm to the conversion plant 100 km with a “transport, lorry of 16t/CH” is used.

Swiss transport data sets are always used if the transport takes place in Switzerland.

2.5 Allocation for by-products

In several production processes for biomass fuels there are by-products. These by-products can be used for example as fodder or as a building material. In many cases it is not possible to avoid an allocation decisions because not sufficient data were available to give physical relationships for all inputs and outputs.

In general the market price of the different products has been used as an allocation criterion if no better information was available. The energy content of the products has normally not been used to derive allocation factors. Further details can be found in the detailed description of the datasets.

Tab. 2.1 Prices of several products used for economic allocation in this study

<table>
<thead>
<tr>
<th>Product</th>
<th>CH</th>
<th>Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>biogas kWh</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>electricity, ethanol kWh</td>
<td>0.10</td>
<td>57.5</td>
</tr>
<tr>
<td>electricity, waste incineration kWh</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>heat, waste incineration MJ</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ethanol, 95% wt. l</td>
<td>1.30</td>
<td>0.72</td>
</tr>
<tr>
<td>ethanol, 99.7% wt. l</td>
<td>1.40</td>
<td>0.82</td>
</tr>
<tr>
<td>bagasse</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

2.6 Fuel at regional storage

Inventory data of the regional storage of liquid biofuels are consistent with the inventory data of petrol and diesel fuels (Jungbluth 2007:174). This unit process includes all transports from the processing to the filling station, the infrastructure of intermediate tanks and the filling station, fugitive emissions to air during refilling and storage operations, water emissions from run of water at the filling station.

The following standard assumptions are used if data are not available:

- 0.5 g/kg fuel are assumed as losses to air. The fugitive emissions to air have to be adapted to the fuel properties.
- Transport of fuel to the filling station is 150 km with lorry 28 t and 100 km with freight train.
- Data of electricity use, infrastructure, water use and emissions are based on the inventory of petrol (see Tab. 2.2)

If fuels are imported to Switzerland to a certain share, these transports are considered additionally.

The standard product quality for all datasets investigated for 2005 is low-sulphur diesel or petrol.
2. General methodology

Tab. 2.2 Life cycle inventory data of fuel distribution in this project based on ecoinvent data v1.2

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Infrastructure/Process</th>
<th>Unit</th>
<th>Uncertainty</th>
<th>General Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>petrol, unleaded, at regional storage</td>
<td>CH 0 kg</td>
<td>1.00E+0</td>
<td>1 1.05</td>
<td>(1,1,1,1,1,1) Product plus losses</td>
<td></td>
</tr>
<tr>
<td>electricity, low voltage, at grid</td>
<td>CH 0 kWh</td>
<td>6.70E-3</td>
<td>1 1.25</td>
<td>(2,4,1,3,3,2) Data for fuel distribution (storage and filling station)</td>
<td></td>
</tr>
<tr>
<td>jet fuel oil, burned in boiler 100KW, non-modulating</td>
<td>CH 0 MJ</td>
<td>6.21E-4</td>
<td>1 1.25</td>
<td>(2,4,1,3,3,2) Data for fuel distribution</td>
<td></td>
</tr>
<tr>
<td>transport, lorry ZfI</td>
<td>CH 0 tkm</td>
<td>1.50E-1</td>
<td>1 2.09</td>
<td>(4,5,na,na,na,na) Standard assumption 100km from plant to filling station</td>
<td></td>
</tr>
<tr>
<td>transport, ferry, rail</td>
<td>CH 0 tkm</td>
<td>1.00E-1</td>
<td>1 2.09</td>
<td>(4,5,na,na,na,na) Standard assumption 100km from plant to filling station</td>
<td></td>
</tr>
<tr>
<td>transport, freight, rail</td>
<td>RER 0 tkm</td>
<td>1 2.00</td>
<td>1 2.00</td>
<td>(,,,,) Import of products</td>
<td></td>
</tr>
<tr>
<td>transport, crude oil pipeline, onshore</td>
<td>RER 0 tkm</td>
<td>1 2.00</td>
<td>1 2.00</td>
<td>(,,,,) Import of products</td>
<td></td>
</tr>
<tr>
<td>regional distribution, oil products</td>
<td>RER 1 unit</td>
<td>2.76E-10</td>
<td>1 1.25</td>
<td>(2,4,1,3,3,3) Data for petrol station</td>
<td></td>
</tr>
<tr>
<td>treatment, sewage, to wastewater treatment, class 2</td>
<td>CH 0 m3</td>
<td>6.88E-7</td>
<td>1 1.25</td>
<td>(2,4,1,3,3,3) Data for petrol station</td>
<td></td>
</tr>
<tr>
<td>disposal, separator sludge, hazardous, to hazardous waste incineration</td>
<td>CH 0 t</td>
<td>1.66E-4</td>
<td>1 1.27</td>
<td>(2,4,3,3,3) Sludge from storage, environmental report and literature</td>
<td></td>
</tr>
<tr>
<td>emission air, High population density</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>Benzene, ethyl-</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons, aliphatic, silanes, unspecified</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons, aromatic</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>t-Butyl methyl ether</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>-</td>
<td>-</td>
<td>1 1.70</td>
<td>(4,5,3,3,4,3) Losses 0.05% according to product properties</td>
<td></td>
</tr>
</tbody>
</table>

2.7 Energy resources

The demand for biogenic energy resources is considered for all agricultural and forestry products with an input of “Energy, gross calorific value, in biomass” at the first stage of production.

This flow is not included in the investigation of secondary resources, by-products and wastes that do not bear any burdens from the upstream processes or the first life cycle. Thus, products from such biomass resources do not bear the burden of a direct use of biogenic energy resource. Their actual demand for energy resources might be therefore lower than their actual energy content. This is consistent with other inventories, e.g. of cement where energy inputs from secondary resources such as waste types are not accounted for.

2.8 Reference unit of products

If not stated otherwise all information on gases is referred to the standard unit “cubic metre at normal conditions” or Nm³. Normal conditions are a temperature of 273.15 K or 0°C and a pressure of P = 1.01325 10⁵ Pa. The according volume is Vmol = 0.022414 m³/mol.

Please note that Nm³ might mean different standard conditions depending on the standard used, e.g. T = 0°C = 273.15 K (DIN 1343) or T = 15°C (ISO 2533).

Some inventories for chemicals are investigated for the mass of pure chemical with a given degree of purity. Thus “ethanol, 95% in H2O, from whey, at fermentation plant” means on kilogram of pure ethanol with a purity of 95% mass percent (plus 0.053 kg of water). Thus in total the datasets refers to 1.053 kg of ethanol 95% in water. This total weight has to be considered in the calculations for transport processes.

8 This is not consistent e.g. with the Swiss energy statistics where energy from waste is accounted for (BFE 2000).
9 http://normkubikmeter.lexikon.fluessiggas.net/
2.9 Biogenic carbon balance

So far different solutions have been used in the ecoinvent database to allocate the biogenic carbon content and biogenic CO2-emissions to different products with a low or unknown economic value (Doka 2007; Nemeczek et al. 2007; Werner et al. 2007). Common for most of these solutions is the maintenance of a correct carbon balance even if other elementary flows are allocated according to economic properties. For agricultural products the allocation factors have been calculated according to the carbon content of the allocated co-products. For wood products a virtual allocation correction process has been introduced in order to correct the carbon balance for products with a low economic value.

With the start of the bioenergy project these different approaches have been analysed. The approach used in the bioenergy project is based on most of the models used in ecoinvent data v1.2. It has the following basic principles for all types of processes and products:

- For each product and process the biogenic and fossil C-content is reported and calculated correctly.
- For each process all functions (products and services) are taken into account. There are no hidden zero allocations to certain products or services with low or no economic value. The user can change allocation factors e.g. for changes in the revenue structure.
- For several intermediate products of the modelling prices are not available or might be quite unsure. The resulting C-balance has been modelled in all cases according to the defined product properties. There are no inconsistencies due to close to zero prices. Thus no escalating change of the C-balance can be observed if the price changes from nearby zero to zero due to the use of a cut-off approach.
- The approach fully avoids the modelling of virtual processes, which are so used only for wood products in order to maintain a correct carbon balance for products with no or low economic value (Werner et al. 2007).

A correct carbon balance should be maintained for all unit processes in the database. This means:

\[\text{Input of carbon} = \text{Output of carbon} \]

This means that the uptake of carbon during plant growing (carbon dioxide, in air) plus all inputs of biogenic carbon with pre-products minus biogenic carbon emissions (e.g. CO2, CH4 and CO) should equal the biogenic carbon content of the biofuel or the product after all calculations and allocations have been done. Thus the following equation is given for each unit or multi-output process:

\[
C_{\text{in,resource}} + C_{\text{in,pre-product}} = C_{\text{out, emissions}} + C_{\text{out, process-output}}
\]

\[
C_{\text{in,resource}} = \text{Carbon dioxide, in air (EcoSpold InputGroup = 4)}
\]

\[
C_{\text{in,pre-product}} = \text{all biogenic carbon content of inputs with technosphere processes (Input-Group = 5)}
\]

\[
C_{\text{out, emissions}} = \text{carbon content of biogenic air emissions of CO2, CH4, CO, NMVOC and carbon emissions to water (e.g. TOC) (OutputGroup = 4)}
\]

\[
C_{\text{out, process-output}} = \text{carbon content of outputs with technosphere processes, (Output-Group = 0 or 2)}
\]

10 Biogenic carbon emissions others than CO2, CH4 and CO are disregarded in some cases were the CO2-emission is based on pure mathematical calculation. Normally the influence of such deviation for the results is quite small.
Three different types of unit process outputs (products and services) can be distinguished:

1.) Electricity, heat, transport services, etc.

\[C_{\text{out, process-output}} = 0 \]

(There is no material output with a C-content from such processes).

\[C_{\text{in, resource}} + C_{\text{in, pre-product}} = C_{\text{out, emissions}} \]

2.) Materials, fuels, etc.

\[C_{\text{out, process-output}} > 0 \]

(the C-content is equal the carbon actually bound in the product)

\[C_{\text{in, resource}} + C_{\text{in, pre-product}} = C_{\text{out, emissions}} + C_{\text{out, process-output}} \]

3.) Waste treatment services. Waste treatment services do not have a direct link to the production of the treated product. The emissions during waste treatment should equal the carbon content of the product that is brought to waste treatment. If the same amount of the product and the waste treatment service is used in a process the resulting carbon balance should be zero. Thus the following equation is true:

\[C_{\text{content(product to be treated, but not part of the unit process)}} + C_{\text{out, process-output}} = 0 \]

\[C_{\text{out, process-output}} = - C_{\text{content(product to be treated)}} \]

\[C_{\text{out, emissions}} - C_{\text{in, resource}} - C_{\text{in, pre-product}} = C_{\text{content(product to be treated)}} \]

In most cases with \(C_{\text{in, resource}} = C_{\text{in, pre-product}} = 0 \)

\[C_{\text{out, emissions}} = C_{\text{content(product to be treated)}} = - C_{\text{out, process-output}} \]

4.) A combination of different types of basic processes in one multi-output processes is possible. In this case the according equation have to be fulfilled for each allocated product. The total for the multi-output process should equal the sum of the correct balances for the single outputs (services and products).

The input and output flows of biomass carbon are discussed for the individual process stages. The carbon content of all products and by-products is stated in order to follow up this balance.

Biogenic NMVOC emissions to air and carbon emissions to water (TOC – Total Organic Carbon) are not considered in the balance, if the CO₂ emission is calculated with fuel properties, because they are neither accounted for in the calculations for the climate change effects in the LCIA.11

The uptake of “Carbon dioxide, in air” is inventoried for all agricultural and forestry products at the beginning of the life cycle. This flow is also included in the inventory of secondary resources and by-products at the first stage of conversion to a biofuel. Due to budget restriction it was not possible to inventory the full first life cycle of such by-products, e.g. whey from milk processing (see Fig. 2.1).

The economic value of such by-products and secondary resources is not often not known. They do normally have a low or no economic value. All economic inputs from the first life cycle are thus allocated to the main products (in this case milk, for example). Thus, for the production of such biogenic wastes all inputs from the first life cycle can be neglected with the only exception of the carbon uptake during plant growing. For these biofuels the input of carbon dioxide at the beginning of their life cycle equals the emissions during conversion and combustion. This is necessary in order to achieve a neutral

11 This is in line with the approach taken for combustion processes using fossil fuels were the CO₂ emissions is also calculated from the carbon content of the fuel.
carbon balance while assessing environmental impacts according to the old implementation rules for greenhouse gas emissions in the database (Frischknecht et al. 2004). With the new implementation without accounting for biogenic CO₂ uptake and emissions this is normally not an issue (Frischknecht et al. 2007b).

For most of the unit processes it was necessary to use calculated CO₂ emissions (instead of measurements), a calculated input of the biomass, the biofuel input or the carbon resource in order to achieve a correct carbon balance. In contrast other emissions like CO, CH₄ and NMVOC are based on measurements.

For multi-output processes it was necessary to adapt the allocation factors for CO₂, biomass or biofuel input in order to achieve a correct balancing. Thus these factors might deviate from the factors used for all other input and output flows.

Fig. 2.1 Example for estimating a correct carbon balance for by-products with no economic value coming from a life cycle not investigated so far in the database

Tab. 2.3 shows a fictive example for the calculation of a correct carbon balance in a unit process with different inputs and outputs. The columns M and N show the inputs and outputs with each elementary flow while in the last three rows there is a calculation for the total balance. Carbon dioxide emissions are calculated as the balance of other inputs and outputs.
Tab. 2.3 Fictive example for the calculation of a correct carbon balance in a normal unit process

<table>
<thead>
<tr>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Technosphere</td>
<td>5</td>
<td>grass from meadow intensive IP, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>5.0E-1</td>
<td>0.45</td>
<td>0.225</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>grass from natural meadow intensive IP, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>1.0E+0</td>
<td>0.45</td>
<td>0.450</td>
<td>0.45</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>grass from natural meadow extensive organic, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>1.0E+0</td>
<td>0.45</td>
<td>0.450</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>transport, lorry 18t</td>
<td>CH</td>
<td>0</td>
<td>km</td>
<td>1.0E-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>electricity, medium voltage, at grid</td>
<td>CH</td>
<td>0</td>
<td>kWh</td>
<td>4.5E-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>heat, unspecified, in chemical plant</td>
<td>RER</td>
<td>0</td>
<td>MJ</td>
<td>6.0E-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>ethanol fermentation plant</td>
<td>CH</td>
<td>1</td>
<td>unit</td>
<td>1.4E-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>Carbon dioxide, biogenic</td>
<td>kg</td>
<td>2.1E-03</td>
<td>0.27</td>
<td>0.563</td>
<td>0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>Carbon monoxide, biogenic</td>
<td>kg</td>
<td>1.0E+0</td>
<td>0.43</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Methane, biogenic</td>
<td>kg</td>
<td>5.0E-02</td>
<td>0.75</td>
<td>0.008</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>Heat, waste</td>
<td>MJ</td>
<td>1.6E-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>ethanol, 95% in H2O, from grass, at fermentation plant</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>1.0E+0</td>
<td>0.52</td>
<td>0.520</td>
<td>0.520</td>
</tr>
<tr>
<td>17</td>
<td>Calculation</td>
<td>C_{in,pre-product}</td>
<td>kg</td>
<td>1.125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>C_{out, emissions}</td>
<td>kg</td>
<td>0.042</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>C_{out,process-output}</td>
<td>kg</td>
<td>0.520</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>C_{out, emissions, CO2} (calculated)</td>
<td>kg</td>
<td>0.563</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Input - Output</td>
<td>kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table shows a fictive example for the calculation of a correct carbon balance in a multi-output process with different inputs and outputs. The columns S and T show the inputs and outputs with each elementary flow while in the last three rows there is a calculation for the total balance. Total carbon dioxide emissions are calculated as the balance of other inputs and outputs. Allocation factors for carbon dioxide, biogenic are based on a correct input-output balance for the three couple products.

Tab. 2.4 Fictive example for the calculation of a correct carbon balance in a multi-output process

<table>
<thead>
<tr>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Technosphere</td>
<td>5</td>
<td>grass from meadow intensive IP, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>3.2E-1</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>grass from natural meadow intensive IP, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>6.0E-2</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>grass from natural meadow extensive organic, at field</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>6.1E-2</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>transport, lorry 18t</td>
<td>CH</td>
<td>0</td>
<td>km</td>
<td>1.0E-1</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>electricity, medium voltage, at grid</td>
<td>CH</td>
<td>0</td>
<td>kWh</td>
<td>4.8E-2</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>heat, unspecified, in chemical plant</td>
<td>RER</td>
<td>0</td>
<td>MJ</td>
<td>6.0E-1</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>ethanol fermentation plant</td>
<td>CH</td>
<td>1</td>
<td>unit</td>
<td>1.4E-11</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>Carbon dioxide, biogenic</td>
<td>kg</td>
<td>1.3E-02</td>
<td>19.4</td>
<td>46.9</td>
<td>33.7</td>
<td>0.27</td>
<td>0.304</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>Carbon monoxide, biogenic</td>
<td>kg</td>
<td>1.0E-2</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
<td>0.43</td>
<td>0.004</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Methane, biogenic</td>
<td>kg</td>
<td>5.0E-02</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
<td>0.75</td>
<td>0.038</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>Heat, waste</td>
<td>MJ</td>
<td>1.6E-1</td>
<td>20.0</td>
<td>45.0</td>
<td>35.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Outputs</td>
<td>2</td>
<td>ethanol, 95% in H2O, from grass, at fermentation plant</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>2.5E-2</td>
<td>100.0</td>
<td>0.52</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>grass fibres, at fermentation</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>4.0E-2</td>
<td>100.0</td>
<td>0.45</td>
<td>0.018</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>proteins from grass, at fermentation</td>
<td>CH</td>
<td>0</td>
<td>kg</td>
<td>5.0E-2</td>
<td>100.0</td>
<td>0.45</td>
<td>0.024</td>
</tr>
<tr>
<td>19</td>
<td>Calculation for biogenic carbon</td>
<td>C_{out,pre-product}</td>
<td>kg</td>
<td>2.2E-3</td>
<td>9.0E-02</td>
<td>2.0E-1</td>
<td>1.6E-1</td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>C_{out, emissions}</td>
<td>kg</td>
<td>1.8E-5</td>
<td>8.4E-3</td>
<td>1.9E-2</td>
<td>1.5E-2</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>C_{out,process-output}</td>
<td>kg</td>
<td>2.3E-5</td>
<td>1.3E-3</td>
<td>3.8E-2</td>
<td>3.4E-2</td>
<td>0.058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C_{out, emissions, CO2} (calculated)</td>
<td>kg</td>
<td>2.1E-3</td>
<td>8.8E-2</td>
<td>1.7E-1</td>
<td>1.2E-1</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Input - Output</td>
<td>kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Even with these refined calculation procedures some small deviations from a fully correct carbon balance are possible e.g. due to rounding errors or neglecting of water pollutants in the balance. Such deviations are tolerated if they amount to less than about 1/1000 of the carbon flow with the production process.
2.10 Inventories for felling of primary forests

2.10.1 Introduction

Several aspects of carbon modelling have to be considered for the unsustainable use or deforestation of primary tropical forests and its following transformation to agricultural or forestry land.

Due to the initial felling, carbon dioxide is released from burning or degradation of unused biomass. Later on carbon dioxide bound in the wood is released after its use. Thus it should be considered as a CO₂-release.

A second source of CO₂-emissions is the release of carbon bound in the soil. This is degraded after the transformation i.e. to agricultural land.

These emissions and resource uses need to be allocated between the initial production of wood from the forest and subsequent transformation to agricultural land.

The felling of primary forests might also reduce methane and other emission occurring naturally (Lowe 2006). Such reductions of emissions occurring prior to the process of interest are generally not accounted for according to the ecoinvent methodology.

A change of carbon content in soils or organic matter above ground occurs also for all other types of land transformation, e.g. transformation from meadow to arable land. So far these changes have not been considered in ecoinvent data. They are normally of much less importance than the transformation of primary forests to arable land. Thus, they are also not taken into account for the inventories elaborated in this report.

2.10.2 Methodology

The inventory modelling starts with the first felling action. The uptake of CO₂ does not take place within the temporal system boundaries of the process. The uptake already took place before the first actions like building of streets or felling have been started. Thus, the existing elementary flow “Carbon dioxide, in air” is not inventoried for the carbon contents of wood and soil.

For analytical reasons it is favourable to record the non-renewable carbon bound in wood and soil with new elementary flows. Also the energy content of the wood from the primary forest is recorded with a separate elementary flow. Thus it is possible to make later on detailed analysis with the data. The following two new elementary flows are used for the extraction of wood and for the degradation of carbon bound in soil:

| Wood, primary forest, standing |
| Carbon, in organic matter, in soil |
| Energy, gross calorific value, in biomass, primary forest |

All CO₂ emissions due to land transformation from wood burning and degradation of carbon bound in soil are recorded with a new type of emissions. The basic uncertainty for this elementary flow is estimated to be relative high (1.4). The separate elementary flow makes it possible to calculate different scenarios for the impact assessment of these specific type of emissions.

| Carbon dioxide, land transformation |

For transformation for tropical forest to agricultural land the changes for the reference plantation period are recorded. The full land transformation is allocated to the use of land for agriculture. This is the same methodological approach as used for other agricultural products (Nemecek et al. 2007). Land
transformation and occupation are recorded according to existing guidelines with new elementary flows:

| Occupation, tropical rain forest | Transformation, from tropical rain forest | Transformation, to tropical rain forest |

The emissions must be allocated among first initial felling with the production of wood and the following use as agricultural or forestry land. Therefore a multi-output dataset is inventoried. First, the land is transformed to “forest, clear-cutting”. If no better information is available all carbon dioxide releases from burning of wood and degradation of carbon content bound in soil are allocated to the use of the land for agriculture or forestry.

The further details are elaborated in the inventory analysis of such processes.

2.11 New elementary flows

The following new elementary flows have been used in the database. All LCIA methods have to be complemented by the users of the datasets investigated in this project.

Tab. 2.5 New elementary flow for resources used for this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>SubCategory</th>
<th>Formula</th>
<th>Unit</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation, tropical rain forest</td>
<td>resource</td>
<td>land</td>
<td>CORINE not known</td>
<td>m2a</td>
<td></td>
</tr>
<tr>
<td>Transformation, from tropical rain forest</td>
<td>resource</td>
<td>land</td>
<td>CORINE not known</td>
<td>m2</td>
<td></td>
</tr>
<tr>
<td>Transformation, to tropical rain forest</td>
<td>resource</td>
<td>land</td>
<td>CORINE not known</td>
<td>m2</td>
<td></td>
</tr>
<tr>
<td>Wood, primary forest, standing</td>
<td>resource</td>
<td>biotic</td>
<td></td>
<td>m3</td>
<td></td>
</tr>
<tr>
<td>Carbon, in organic matter, in soil</td>
<td>resource</td>
<td>in ground</td>
<td>C</td>
<td>kg</td>
<td>007440-44-0</td>
</tr>
<tr>
<td>Energy, gross calorific value, in biomass, primary forest</td>
<td>resource</td>
<td>biotic</td>
<td></td>
<td>MJ</td>
<td></td>
</tr>
</tbody>
</table>
2. General methodology

Tab. 2.6 New elementary flow for emissions to agricultural soil used for this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>SubCategory</th>
<th>Formula</th>
<th>Unit</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H8Cl6</td>
<td>kg</td>
<td>000309-00-2</td>
</tr>
<tr>
<td>Acetamidate</td>
<td>soil</td>
<td>agricultural</td>
<td>C8H7NO3</td>
<td>kg</td>
<td>000060-35-5</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H12ClNO2</td>
<td>kg</td>
<td>042556-82-1</td>
</tr>
<tr>
<td>Alachlor</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H2O2ClNO2</td>
<td>kg</td>
<td>015972-60-8</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>soil</td>
<td>agricultural</td>
<td>C22H17N3O5</td>
<td>kg</td>
<td>131860-33-8</td>
</tr>
<tr>
<td>Benomyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H18N4O3</td>
<td>kg</td>
<td>017804-35-2</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>soil</td>
<td>agricultural</td>
<td>C29H21NO2</td>
<td>kg</td>
<td>015185-60-1</td>
</tr>
<tr>
<td>Carbimuron-ethyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H15ClNO6S</td>
<td>kg</td>
<td>090982-32-4</td>
</tr>
<tr>
<td>Cindon-Ethyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C19H17Cl2NO4</td>
<td>kg</td>
<td>142891-20-1</td>
</tr>
<tr>
<td>Cilothidim</td>
<td>soil</td>
<td>agricultural</td>
<td>C17H26ClNO3S</td>
<td>kg</td>
<td>099129-21-2</td>
</tr>
<tr>
<td>Chlorimuron-methyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H13ClNO5S</td>
<td>kg</td>
<td>147150-35-4</td>
</tr>
<tr>
<td>Ciflutrin</td>
<td>soil</td>
<td>agricultural</td>
<td>C22H18Cl2FNO3</td>
<td>kg</td>
<td>068359-37-5</td>
</tr>
<tr>
<td>Diclofop-P</td>
<td>soil</td>
<td>agricultural</td>
<td>C8HBC2O3</td>
<td>kg</td>
<td>015165-67-0</td>
</tr>
<tr>
<td>Difenbenzuron</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H6ClF2N2O2</td>
<td>kg</td>
<td>033367-38-5</td>
</tr>
<tr>
<td>Difluoroprop-sodium</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H11F2N4NaO3</td>
<td>kg</td>
<td>109293-98-8</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>soil</td>
<td>agricultural</td>
<td>C13H18ClNO2</td>
<td>kg</td>
<td>050563-36-5</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>soil</td>
<td>agricultural</td>
<td>C5H12N3O3S</td>
<td>kg</td>
<td>000090-51-8</td>
</tr>
<tr>
<td>Dithianon</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H4N2O2S2</td>
<td>kg</td>
<td>000347-22-6</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>soil</td>
<td>agricultural</td>
<td>C6H4ClO3S</td>
<td>kg</td>
<td>000115-29-7</td>
</tr>
<tr>
<td>Etvalenrate</td>
<td>soil</td>
<td>agricultural</td>
<td>C25H22ClNO3</td>
<td>kg</td>
<td>066230-04-4</td>
</tr>
<tr>
<td>Fenbuconazole</td>
<td>soil</td>
<td>agricultural</td>
<td>C19H17ClNO4</td>
<td>kg</td>
<td>114369-43-6</td>
</tr>
<tr>
<td>Fenoxaprop</td>
<td>soil</td>
<td>agricultural</td>
<td>C16H12ClNO5</td>
<td>kg</td>
<td>095617-09-7</td>
</tr>
<tr>
<td>Fipronil</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H4ClF6NO4OS</td>
<td>kg</td>
<td>120068-37-3</td>
</tr>
<tr>
<td>Flumetsulam</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H6F2NOS</td>
<td>kg</td>
<td>098967-49-9</td>
</tr>
<tr>
<td>Flumioxazin</td>
<td>soil</td>
<td>agricultural</td>
<td>C19H15F2N2O4</td>
<td>kg</td>
<td>103831-09-7</td>
</tr>
<tr>
<td>Fluquinconazole</td>
<td>soil</td>
<td>agricultural</td>
<td>C16H8ClF6NO</td>
<td>kg</td>
<td>136426-54-5</td>
</tr>
<tr>
<td>Flurathrene</td>
<td>soil</td>
<td>agricultural</td>
<td>C18H14F3NO2</td>
<td>kg</td>
<td>095652-25-3</td>
</tr>
<tr>
<td>Fomesafen</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H10ClF3N2O6S</td>
<td>kg</td>
<td>072178-02-0</td>
</tr>
<tr>
<td>Formothane</td>
<td>soil</td>
<td>agricultural</td>
<td>C7H7ClNO7S</td>
<td>kg</td>
<td>173159-57-4</td>
</tr>
<tr>
<td>Imazamox</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H19N3O4</td>
<td>kg</td>
<td>114311-32-9</td>
</tr>
<tr>
<td>Imazapyr</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H19N3O3</td>
<td>kg</td>
<td>081334-34-1</td>
</tr>
<tr>
<td>Imazethapyr</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H19N3O3</td>
<td>kg</td>
<td>081335-77-7</td>
</tr>
<tr>
<td>Isobutyluron</td>
<td>soil</td>
<td>agricultural</td>
<td>C13H12F5NO6S</td>
<td>kg</td>
<td>185119-76-2</td>
</tr>
<tr>
<td>Iprodion</td>
<td>soil</td>
<td>agricultural</td>
<td>C13H13Cl2NO3O</td>
<td>kg</td>
<td>036743-19-7</td>
</tr>
<tr>
<td>Isoxasulfuron</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H12F3NO4S</td>
<td>kg</td>
<td>141112-29-0</td>
</tr>
<tr>
<td>Kocide-methyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C18H11N4O3</td>
<td>kg</td>
<td>143390-89-0</td>
</tr>
<tr>
<td>Metangy</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H10Cl2N2O4</td>
<td>kg</td>
<td>135591-00-3</td>
</tr>
<tr>
<td>Mesotrione</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H13N7O7S</td>
<td>kg</td>
<td>104206-62-8</td>
</tr>
<tr>
<td>Monocrotophos</td>
<td>soil</td>
<td>agricultural</td>
<td>C7H11NO5P</td>
<td>kg</td>
<td>006923-22-4</td>
</tr>
<tr>
<td>Oxamethozone-methyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C8H10ClNO4P2</td>
<td>kg</td>
<td>000301-12-2</td>
</tr>
<tr>
<td>Oxamethozone</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H14N2</td>
<td>kg</td>
<td>004865-14-7</td>
</tr>
<tr>
<td>Oxamethozone</td>
<td>soil</td>
<td>agricultural</td>
<td>C10H14N5OS</td>
<td>kg</td>
<td>000560-38-2</td>
</tr>
<tr>
<td>Peerminhr</td>
<td>soil</td>
<td>agricultural</td>
<td>C2H2O2Cl2O3</td>
<td>kg</td>
<td>052645-53-1</td>
</tr>
<tr>
<td>Peimsuluron</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H10F4N4O7S</td>
<td>kg</td>
<td>113036-87-6</td>
</tr>
<tr>
<td>Prequat</td>
<td>soil</td>
<td>agricultural</td>
<td>C15H16F3N4OS4S</td>
<td>kg</td>
<td>094125-34-4</td>
</tr>
<tr>
<td>Quinmerac</td>
<td>soil</td>
<td>agricultural</td>
<td>C11H8ClNO2</td>
<td>kg</td>
<td>090717-03-6</td>
</tr>
<tr>
<td>Quinalfopyl-P</td>
<td>soil</td>
<td>agricultural</td>
<td>C17H13Cl2N2O4</td>
<td>kg</td>
<td>094501-08-8</td>
</tr>
<tr>
<td>Spiroxamine</td>
<td>soil</td>
<td>agricultural</td>
<td>C18H35N2O2</td>
<td>kg</td>
<td>11834-30-8</td>
</tr>
<tr>
<td>Sulfinfrazone</td>
<td>soil</td>
<td>agricultural</td>
<td>C11H10Cl2F2N4O3</td>
<td>kg</td>
<td>122836-95-5</td>
</tr>
<tr>
<td>Sulfosafate</td>
<td>soil</td>
<td>agricultural</td>
<td>C6H16N5OPS</td>
<td>kg</td>
<td>081591-81-3</td>
</tr>
<tr>
<td>tau-Fluvalinate</td>
<td>soil</td>
<td>agricultural</td>
<td>C2H6H2ClF3N2O3</td>
<td>kg</td>
<td>102851-06-9</td>
</tr>
<tr>
<td>Tebupirimfos</td>
<td>soil</td>
<td>agricultural</td>
<td>C13H22N2O3PS</td>
<td>kg</td>
<td>098182-53-5</td>
</tr>
<tr>
<td>Tebufloxitin</td>
<td>soil</td>
<td>agricultural</td>
<td>C17H14ClF2O2</td>
<td>kg</td>
<td>079538-32-2</td>
</tr>
<tr>
<td>Thiophanate-methyl</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H14N4O4S2</td>
<td>kg</td>
<td>023564-05-8</td>
</tr>
<tr>
<td>Thiram</td>
<td>soil</td>
<td>agricultural</td>
<td>C6H2N2S4</td>
<td>kg</td>
<td>000137-26-8</td>
</tr>
<tr>
<td>Tetrademol</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H18ClN3O2</td>
<td>kg</td>
<td>055219-65-3</td>
</tr>
<tr>
<td>Tribensuron</td>
<td>soil</td>
<td>agricultural</td>
<td>C14H15N5O6S</td>
<td>kg</td>
<td>106040-48-6</td>
</tr>
<tr>
<td>Vinclozolin</td>
<td>soil</td>
<td>agricultural</td>
<td>C12H9Cl2N3O3</td>
<td>kg</td>
<td>050471-44-8</td>
</tr>
</tbody>
</table>
2. General methodology

Tab. 2.7 New elementary flow for emissions to air used for this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>SubCategory</th>
<th>Formula</th>
<th>Unit</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide, land transformation</td>
<td>air</td>
<td>high population density</td>
<td>CO2</td>
<td>kg</td>
<td>000124-38-9</td>
</tr>
<tr>
<td>Carbon dioxide, land transformation</td>
<td>air</td>
<td>low population density</td>
<td>CO2</td>
<td>kg</td>
<td>000124-38-9</td>
</tr>
<tr>
<td>Carbon dioxide, land transformation</td>
<td>air</td>
<td>low population density, long-term</td>
<td>CO2</td>
<td>kg</td>
<td>000124-38-9</td>
</tr>
<tr>
<td>Carbon dioxide, land transformation</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>CO2</td>
<td>kg</td>
<td>000124-38-9</td>
</tr>
<tr>
<td>Carbon dioxide, land transformation</td>
<td>air</td>
<td>unspecified</td>
<td>CO2</td>
<td>kg</td>
<td>000124-38-9</td>
</tr>
<tr>
<td>Isoprene</td>
<td>air</td>
<td>high population density</td>
<td>C5H8</td>
<td>kg</td>
<td>000078-79-5</td>
</tr>
<tr>
<td>Isoprene</td>
<td>air</td>
<td>low population density</td>
<td>C5H8</td>
<td>kg</td>
<td>000078-79-5</td>
</tr>
<tr>
<td>Isoprene</td>
<td>air</td>
<td>low population density, long-term</td>
<td>C5H8</td>
<td>kg</td>
<td>000078-79-5</td>
</tr>
<tr>
<td>Isoprene</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>C5H8</td>
<td>kg</td>
<td>000078-79-5</td>
</tr>
<tr>
<td>Isoprene</td>
<td>air</td>
<td>unspecified</td>
<td>C5H8</td>
<td>kg</td>
<td>000078-79-5</td>
</tr>
<tr>
<td>Terpenes</td>
<td>air</td>
<td>high population density</td>
<td>C10H16</td>
<td>kg</td>
<td>068956-56-9</td>
</tr>
<tr>
<td>Terpenes</td>
<td>air</td>
<td>low population density</td>
<td>C10H16</td>
<td>kg</td>
<td>068956-56-9</td>
</tr>
<tr>
<td>Terpenes</td>
<td>air</td>
<td>low population density, long-term</td>
<td>C10H16</td>
<td>kg</td>
<td>068956-56-9</td>
</tr>
<tr>
<td>Terpenes</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>C10H16</td>
<td>kg</td>
<td>068956-56-9</td>
</tr>
<tr>
<td>Terpenes</td>
<td>air</td>
<td>unspecified</td>
<td>C10H16</td>
<td>kg</td>
<td>068956-56-9</td>
</tr>
<tr>
<td>Formic acid</td>
<td>air</td>
<td>high population density</td>
<td>CH2O2</td>
<td>kg</td>
<td>000064-18-6</td>
</tr>
<tr>
<td>Formic acid</td>
<td>air</td>
<td>low population density</td>
<td>CH2O2</td>
<td>kg</td>
<td>000064-18-6</td>
</tr>
<tr>
<td>Formic acid</td>
<td>air</td>
<td>low population density, long-term</td>
<td>CH2O2</td>
<td>kg</td>
<td>000064-18-6</td>
</tr>
<tr>
<td>Formic acid</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>CH2O2</td>
<td>kg</td>
<td>000064-18-6</td>
</tr>
<tr>
<td>Formic acid</td>
<td>air</td>
<td>unspecified</td>
<td>CH2O2</td>
<td>kg</td>
<td>000064-18-6</td>
</tr>
<tr>
<td>Furan</td>
<td>air</td>
<td>high population density</td>
<td>C4H4O</td>
<td>kg</td>
<td>000110-00-9</td>
</tr>
<tr>
<td>Furan</td>
<td>air</td>
<td>low population density</td>
<td>C4H4O</td>
<td>kg</td>
<td>000110-00-9</td>
</tr>
<tr>
<td>Furan</td>
<td>air</td>
<td>low population density, long-term</td>
<td>C4H4O</td>
<td>kg</td>
<td>000110-00-9</td>
</tr>
<tr>
<td>Furan</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>C4H4O</td>
<td>kg</td>
<td>000110-00-9</td>
</tr>
<tr>
<td>Furan</td>
<td>air</td>
<td>unspecified</td>
<td>C4H4O</td>
<td>kg</td>
<td>000110-00-9</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>air</td>
<td>high population density</td>
<td>C2H3N</td>
<td>kg</td>
<td>000075-05-8</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>air</td>
<td>low population density</td>
<td>C2H3N</td>
<td>kg</td>
<td>000075-05-8</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>air</td>
<td>low population density, long-term</td>
<td>C2H3N</td>
<td>kg</td>
<td>000075-05-8</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>air</td>
<td>lower stratosphere + upper troposphere</td>
<td>C2H3N</td>
<td>kg</td>
<td>000075-05-8</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>air</td>
<td>unspecified</td>
<td>C2H3N</td>
<td>kg</td>
<td>000075-05-8</td>
</tr>
</tbody>
</table>

2.12 Air emissions

Generally the sub-category “high population density” is used for all emissions to air from conversion processes. For other types of processes the same rules as for similar processes in ecoinvent data v1.2 are applied.

Emissions of sulphur dioxide are based on the sulphur content of the fuel.

Abbreviations

For abbreviations of country codes e.g. DE, FR, AT, IT, BR, IN, CN see the names list of the ecoinvent project.

- **BTL**: biomass-to-liquid Treibstoff
- **DM**: dry matter
- **DME**: Dimethylether
- **dt**: Dezitonnen (=100kg)
- **E-1**: Exponential writing of figures. The information 1.2E-2 has to be read as 1.2 * 10-2 = 0.012.
- **ETBE**: ethyl-tertiary-butyl-ether
- **IP**: Integrated production (specific type of agricultural production in Switzerland)
- **LCA**: life cycle assessment
- **LCI**: life cycle inventory analysis
- **LCIA**: life cycle impact assessment
- **m. o. s.**: meter over sea level
- **Mm3**: Million cubic metre
2. General methodology

Nm³ Norm cubic metre, volume of gases under norm conditions with temperature $T = 0°C = 273,15 K$ (DIN 1343) or $T = 15°C$ (ISO 2533) and pressure $p = 101325 Pa = 101325 N/m² = 1013,25 hPa = 101,325 kPa$. In this study we assume $T = 0°C$.

n.a. not available

PJ Peta Joule

RME rape methyl ester

SME sunflower methyl ester

References

http://normkubikmeter.lexikon.fluessiggas.net/
Doka 2007

Faist Emmenegger et al. 2003

Frischknecht et al. 2004

Frischknecht et al. 2007a

Frischknecht et al. 2007b

Hersener & Meier 1999

Jungbluth & Frischknecht 2004

Jungbluth 2007

Kägi et al. 2007

Lowe 2006

Nemecek et al. 2007

Scheurer & Baier 2001

Spielmann et al. 2007
2. General methodology

Werner et al. 2007

Zah et al. 2007

Part II

II. Life Cycle Inventories

Authors: see individual chapter

Citation:

© Swiss Centre for Life Cycle Inventories / 2007
1 Introduction to Part II

The life cycle inventories of bioenergy have been investigated in three sub-projects by different project partners. The following chapters are included in this part of the report:

- i. Swiss agricultural products
 - Grass
 - Rape seed, organic

- ii. Foreign agricultural production
 - Corn, US
 - Oil palm, MY
 - Rape seed, conventional, DE
 - Rye conventional, RER
 - Soybean, BR and US
 - Sugar cane, BR
 - Sweet sorghum, CN

- iii. Biomass conversion to fuels
 - Biogas
 - Biowaste
 - Sewage sludge
 - Liquid manure
 - Agricultural co-digestion (plants without and with coverage for methane reduction)
 - Grass
 - Whey
 - Synthetic-fuels (Methane and Methanol from wood)
 - Ethanol 95% and 99.7%
 - Swiss biomass (sugar beets, grass, whey)
 - Sugar cane in Brazil
 - Swiss biomass (sugar beet molasses, potatoes, wood) and foreign production (rye, sugar-cane molasses, corn, sweet sorghum), ETBE production with ethanol from biomass (Ethyl Tert-butyl Ether)
 - Oil-based biofuels (rape seed, palm oil, soybeans, waste cooking oil)
 - Gaseous fuels at service station (biogas and natural gas)

- iv. Transport services
 - Road transport services biofuels and alternative fuels
 - Road transport services with recent emission standards\(^{13}\)

- v. Waste management services

\(^{13}\) These datasets have been investigated within this project, but they are documented in a separate ecoinvent report (Spielmann et al. 2007).
• Incineration of Biowaste and Sewage Sludge
• Incineration Sewage Sludge in Cement Kiln

vi. Basic chemicals
• Allyl chloride
• Epichlorohydrin
• Potassium hydroxide
• n-Hexane
• Synthetic glycerine
• Allyl chloride from sieve separation of naphtha
• Isobutene (not investigated)14

14 Isobutylene or isobutene (CAS No. 000115-11-7) is a direct refinery product. Thus, it has not been investigated. Values for “naphtha, at refinery” are used as a proxy dataset. Personal communication between Mike Chudacoff and Michael Overcash, 18.2.2005.