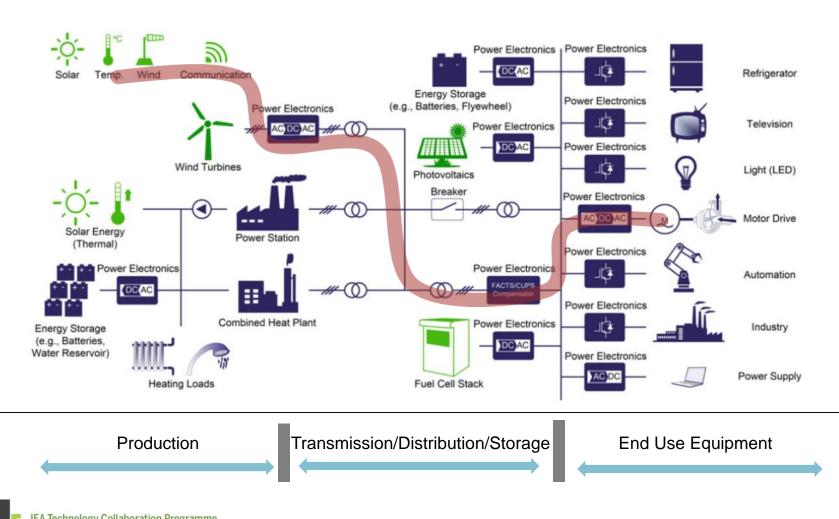


Wide Band Gap Semiconductors – the future of power electronics (based on PECTA – the Power Electronic Conversion Annex of the IEA TCP 4E)

Roland Brüniger SFOE Programme Manager


iea-4e.org



International Context (IEA-TCP)

- 4E: Energy Efficient End-Use Equipment
- **14 Countries and the EU-Commission** are currently member of the 4E TCP (Countries: AU, AT, CA, CN, DK, FR, JP, KR, NL, NZ, CH, SE, UK, US)
- 4 ongoing Annexes:
 - EMSA: Electric Motor Systems Annex
 - EDNA: Electronic Devices and Networks Annex
 - SSL: Solid State Lighting Annex
 - PECTA: Power Electronic Conversion Technology Annex
- 2 major initiatives:
 - PEET: Product Energy Efficiency Trends
 - cda: Connected Device Alliance
- Link: <u>https://www.iea-4e.org/</u>

0000 00

Publication

Wide Band Gap Technology: Efficiency Potential and Application Readiness Map Officially released: May 2020, 100 pages

Outline

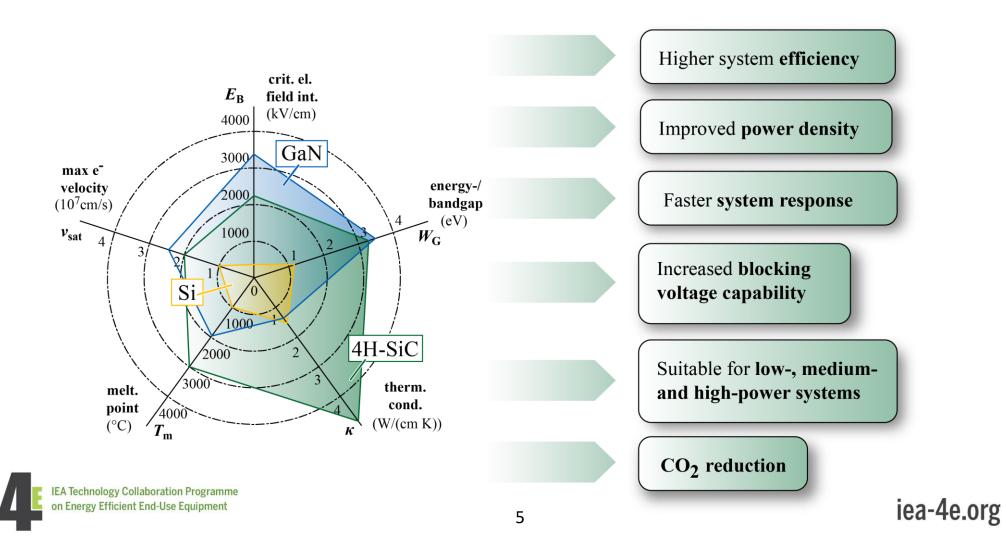
- o Introduction
- Applications in Focus
- o Advantages of WBG in the Applications
- Existing Roadmaps
- Application Readiness Map
- WBG-Technology Challenges
- Potential Energy Savings for Selected Applications
- Exploring Policies for WBG Technology
- Key Findings and Outlook

Wide Band Gap Technology: Efficiency Potential and Application Readiness Map 4E Power Electronic Conversion Technology Annex (PECTA)

May 2020

echnology Collaboration Programme ytea

https://www.aramis.admin.ch/Default?DocumentID=65690&Load=true



0000 00

• Wide Bandgap – An Overview (SiC- and GaN-based semiconductors)

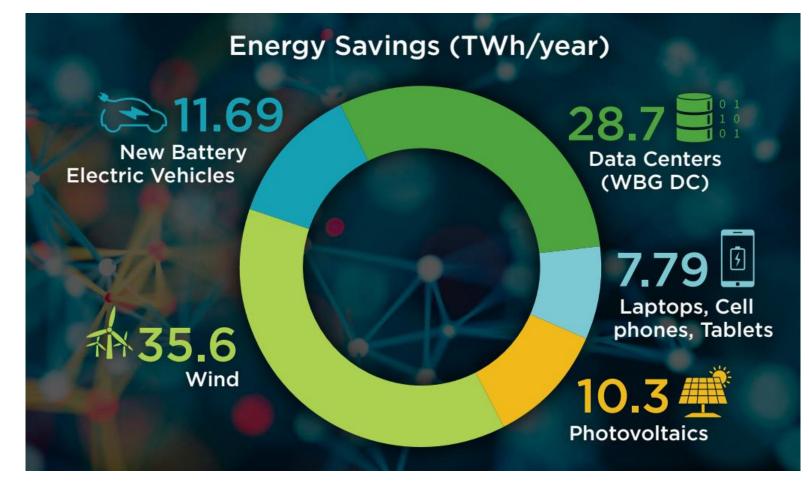
PECTA, The Power Electronic Conversion Technology Annex

Roadmap

iea-4e.org

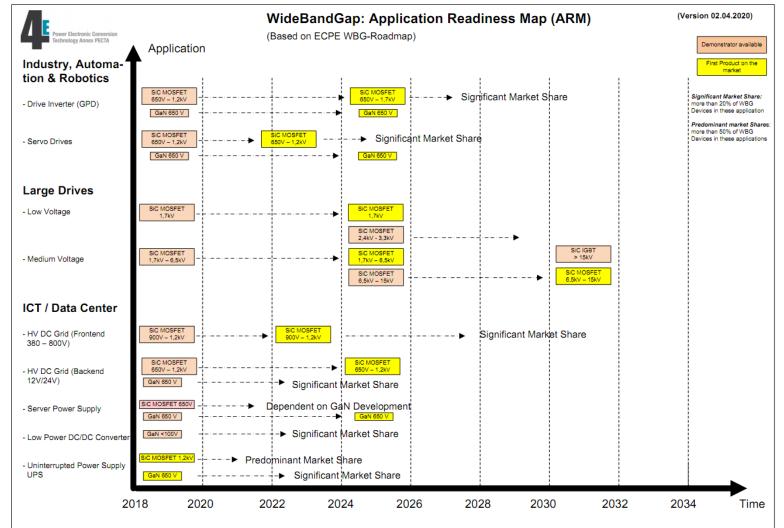
PECTA – available results

- Market prediction SiC:
 - Compound annual growth rate (CAGR) 31% - (2018-2023)
 - According to Yole: Transistors will be key drivers
 - Automotive main driver for SiC Market (traction inverters, onboard chargers, charging infrastructure,...)
- Market prediction GaN:
 - CAGR 55% (2018-2023)
 - Power supplies are shortterm drivers
 - Long-term: EVs, motor drives, wireless charging,...


IEA Technology Collaboration Programme on Energy Efficient End-Use Equipment

THE SIC POWER CONDUCTOR MARKET

• Energy Savings of selected applications

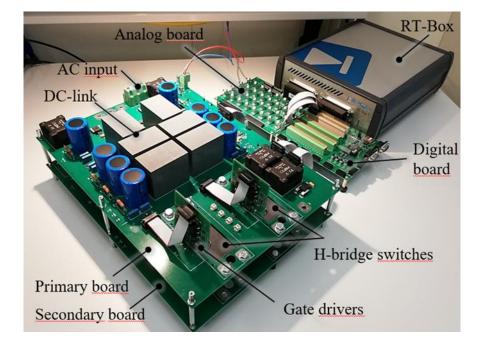


4E PECTA, The Power Electronic Conversion Technology Annex

PECTA – available results

- Application Readiness Map (ARM)
- This ARM was as well the basis for an ARM in the HST-TCP
- → Indirect interaction between TCPS via CH-Representative

0000000


- Policy
- $_{\odot}~$ Listing of different types and sub-types of instruments
- $_{\odot}~$ WBG still at a very early stage for many applications (currently RD&D

Main Type		Sub Type 1		Sub type 2		Main Type		Sub Type 1		Sub type 2	
Economic Instrument	E	Direct investment	D -	Funds to sub-national governments	F	Policy support	Р	Institution creation	I		
				Infrastructure investments	1			Strategic planning	S		
				Procurement rules	Р			Auditing	Α		
				RD&D Funding	R	Regulatory instruments	R	Codes & standards	С	Building codes & standards	В
		Fiscal/Financial incentives	F -	Feed-in tariffs/premiums	F					Product standards	Р
				Grants and subsidies	G					Sectoral standards	S
				Loans	L					Vehicle fuel economy & emissions standards	V
				Tax relief	Tr			Monitoring	М		
				Taxes	Т			Obligation schemes	Ob		
				User charges	С			Other mandatory requirements	0		
		Market-based instruments	М	GHG emissions allowances	Α	Research, devel- opment & de- ployment (RD&D)	RD	Demonstration project	D		
				Green certificates	G			Research program	R	Technology deployment and diffusion	Dp
				White certificates	W					Technology development	Dv
Information & education		Implementation advice/Aid	А			Voluntary approaches	V	Negotiated agreements (Pub- lic-private sector)	N		
		Information provision	I								
		Performance label	L	Comparison label	С			Public voluntary schemes	V	-	
				Endorsement label	E			Unilateral commitments	С		
		Professional training & qualification	Т			IEA 4E EDNA Annex: "Encouraging Intelligent Efficiency - Study of policy opportunities", 2					

- WBG-technology challenges (= hurdles)
 - Temperature increase
 - Gate voltage limits (particular GaN)
 - o Reliability
 - High switching frequency
 - $\circ~$ New packages and topology solutions
 - o Cost
 - Shortage of materials (particular SiC)
 - o Wafer diameter
 - Standardization (Comparability)

0000 00

PECTAs' goal and ongoing activities (2020 – 2024)

PECTA goals: Collecting and analyzing information about new wide band gap (WBG) based power electronic devices;

Coordinating of international approaches that promote WBG-based power electronics Developing greater understanding and action amongst governments and policy makers.

Tasks:Task A: Completing and updating available efficiency figuresTask B: Energy and environmental related life cycle assessment (LCA)Task C: Revision of elaborated application readiness maps (ARMs)Task D: Policy measures and mapping with applications on a timelineTask E: Standards to support the WBG-market entranceTask F: Measurement of power supply efficiency

GaN-based Power Electronics for Energy Efficiency Applications

EPFL, Completion Q1 2019 (<u>https://www.aramis.admin.ch/Texte/?ProjectID=36837</u>) Investigating the increase of system efficiency in power conversion by using GaN semiconductor technology

High-efficiency power converters for potentially-large energy-savings applications

EPFL, Completion Q2 2020 (<u>https://www.aramis.admin.ch/Texte/?ProjectID=40293</u>) Design and demonstration of power converter circuits with large energy saving potential for demanding applications such as PV microinverters and LED-based street lighting

Advanced SiC Material for Power Electronic Devices (Ampere)

FHNW / HITACHI-ENERGY, Completion Q3 2021 (<u>https://www.aramis.admin.ch/Texte/?ProjectID=40193</u>)

Development of advanced high voltage SiC device technologies that go beyond the state of the art. The focus was on 6.5 and 10 kV SiC switches and diodes.

Roadrunner Commercial Vehicle Inverter and Testing on eBus Line

ABB / RVBW / FHNW, Completion 2022 / 2023 (extension)

As part of the P+D project "Roadrunner", a fleet of eBuses was to be equipped with a new power converter based on Silicon Carbide (SiC) semiconductors;

Swiss Hybrid Inverter

FHNW, Completion Q3 2022

Simulation, construction and measurement of a prototype Si IGBT/SiC MOSFET cross-hybrid-switch with 1,2 kV and 100 kW

IEA PECTA: Analysis and Loss Measurements of WBG-based Devices EPFL, Completion Q2 2024

Development of basics for WBG devices as a basis for future reproducible measurements (prerequisite for standardization)

Optimized SiC PV-Converter

ZHAW / AIT, Completion Q4 2023 / Q1 2024

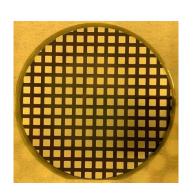
Construction of a PV inverter in the power range of 5-10kW based on a SiC MOSFET bridge from Infineon and comparison with a commercial Si-based PV inverter

Optimal, application-relevant and system efficiency of SiC-pump-drive

FHNW, Grundfos Pumpen AG, Completion Q 2025 Development of efficient SiC converter in the range of several kW for water pumps (or water circulated pump)

PECTA, The Power Electronic Conversion Technology Annex

Contacts


PECTA Chair: Roland Brueniger: <u>roland.brueniger@brueniger.swiss</u>

PECTA Vice Chair: Adriana Díaz: <u>diaz@ecodesign-company.com</u>

PECTA Operating Agent: Markus Makoschitz: <u>Markus.Makoschitz@ait.ac.at</u>

AC Side Filter DC Capacitors Control Board CM Filter (DC Side) OC Inductor

