SCCER FEEB&D Urban Renewables and Cooling

CITIES: FRIENDS OR FOES?

- Swiss buildings are responsible for 37% of final energy demand and 27% of domestic CO₂ emissions.
- Local renewable energies (solar, geothermal, wind) will lead the urban energy system to carbon neutrality.

COOLING CHALLENGE

- Rising temperatures due to climate change will increase the future cooling demand in urban areas.
- Future cooling demand and renewables potential in urban areas were assessed at national level.
- Urban Heat Island effect on cooling demand is scrutinised by combining mesoscale and district models.

Future cooling demand (Services)

HARVESTING RENEWABLES

- NEST SolAce was set-up as a future urban apartment offering optimal comfort and low environmental impact.
- Passive/active technologies were implemented on the facades to generate solar heat and electricity.
- Multi-functional facade elements are comprising:
 - Coloured nanocomposite glazing for PV solar modules and solar thermal collectors
 - Micro-structured glazing for dynamic daylight and solar gain control
 - Laser-treated glazing fostering mobile communications
- HDR vision sensors for blind and electric lighting control favour energy savings and reduce cooling loads.
- Evaporative cooling using porous urban materials and free cooling in buildings can improve outdoor/indoor comfort.

KEY RESULTS

- NEST SolAce is energy positive for space heating, domestic hot water and appliances on an annual basis.
- Embodied energy fits to Minergie-ECO commended limit thanks to a wooden-made modular prefabrication.
- Carbon neutrality is achieved thanks to CO₂ sequestration in wood products over their life span.
- Passive cooling measures (window shades, night cooling) can be used in the future for indoor climate control.
- Evaporative cooling solutions and urban greening can be used to dampen peak air temperatures, reduce stress during heat waves and improve outdoor comfort.

sccer | future energy efficient buildings & districts

Research supported by:
Innosuisse | ETH Domain | SFOE | BASF |
Solstis | CSEM | Griesser | Regent | AGC